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Abstract
The dominant visual search paradigm for object class detection is sliding win-
dows. Although simple and effective, it is also wasteful, unnatural and rigidly
hardwired. We propose strategies to search for objects which intelligently ex-
plore the space of windows by making sequential observations at locations decided
based on previous observations. Our strategies adapt to the class being searched
and to the content of a particular test image, exploiting context as the statistical
relation between the appearance of a window and its location relative to the ob-
ject, as observed in the training set. In addition to being more elegant than sliding
windows, we demonstrate experimentally on the PASCAL VOC 2010 dataset that
our strategies evaluate two orders of magnitude fewer windows while achieving
higher object detection performance.

1 Introduction

Object class detection is a central problem in computer vision. Among the broad palette of ap-
proaches [2, 22, 31], most state-of-the-art detectors rely on the sliding window paradigm [7, 8, 12,
15, 30, 31]. A classifier is trained to decide whether a window contains an instance of the target
class and is used at test time to score all windows in an image over a regular grid in location and
scale. The local maxima of the score function are returned as the detections. Despite its popularity,
the sliding window paradigm seems wasteful and unnatural. Cognitive science research [24] mea-
suring eye-tracks has shown that humans search for objects in a very different way, by successively
exploring a small number of promising locations, rapidly converging on the object of interest. This
process decides where to look next based on the context gathered in previous observations (fixation
points). As opposed to sliding-windows, this search scheme adapts to the image content and the
class being searched.

In this paper we propose strategies to search for objects in images which have these crucial charac-
teristics. Each strategy is specific to an object class and intelligently explores the space of windows
by making sequential observations at locations decided based on previous observations. Figure 1
illustrates the key intuition by applying an ideal strategy to search for cars in a test image. The strat-
egy might start at window w1, which is a patch of sky. The strategy has learned from the training
data that cars are typically below the sky, so it decides to try a window below w1, e.g. moving to
windoww2. Asw2 covers a patch of road, and the strategy has learned that cars are frequently found
on roads, it continues to search the road region, e.g. moving to w3. As w3 contains the right end of
a car, the strategy moves to the left to w4, completing the search.

Given a set of training images of a class with ground-truth object locations, our method learns a
strategy to localize objects of that class by sequentially evaluating windows. To achieve this it
models the statistical relation between the position and appearance of windows in the training images
to their relative position wrt to the ground-truth (sec. 2 and 3). In addition to being more elegant than
sliding windows, the proposed technique offers practical advantages. It greatly reduces the number
of observed windows, and therefore the number of times a window classifier is evaluated (potentially
very expensive [15, 30]). Moreover, it naturally exploits context information to avoid evaluating the
classifier on large portions of an image which might contain cluttered areas. This leads to lower
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Figure 1: Searching for a car driven by context. An ideal search strategy moves through the sequence of
windows w1 to w4. See main text.

false-positive rates, and therefore higher object detection performance than sliding windows, despite
evaluating fewer windows. Finally, our method makes no assumption on the form of the window
classifier and therefore can be applied on top of any classifier (e.g. [7, 8, 12, 15, 30, 31]).

In sec. 5 we report experiments on the highly challenging PASCAL VOC 2010 dataset, using the
popular deformable part model of [12] as the window classifier. The experiments demonstrate that
our learned strategies perform better in terms of object detection accuracy than sliding windows,
while greatly reducing the number of classifier evaluations by a factor of 250× (100 vs 25000
in [12]). Moreover, we outperform two recent methods to reduce the number of classifier evalu-
ations [1, 29] as they evaluate about 1000 windows while losing detection accuracy compared to
sliding windows. To our knowledge, this is the first method capable of saving window evaluations
while at the same time improving detection accuracy.

Related work. Several works try to reduce the number of windows evaluated in the traditional
sliding-window paradigm. Lampert et al. [20] proposed a branch-and-bound scheme to find the
highest scored window while evaluating the classifier as few times as possible. However, it is re-
stricted to classifiers for which a good upper bound on a set of windows exists. Other works [15, 30]
run first a linear classifier over all windows, and then evaluate a complex non-linear kernel only on
a few highly scored windows. The recent approaches [1, 29] evaluate the classifier only on a small
number of windows likely to cover objects rather than backgrounds. The authors of [11, 26] propose
a complementary tactic: to reduce the cost of evaluating one window, but stay in the sliding-window
paradigm. Their techniques are specific to the window classifier [12], as they exploit its exact form
(e.g. parts [11], two resolutions [26]).

Context has been used by [6, 8, 16, 28] to improve object detection. They employ background-to-
object context to avoid out-of-context false-positive detections [16, 28], or reason about the spatial
relations between multiple objects [6, 8]. All these methods use context as an additional cue on top
of individual object detectors, whereas in our approach context drives the search for an object in the
image, determining the sequence of windows where the classifier is evaluated.

Numerous works propose saliency detectors [1, 13, 17, 18] which try to find interesting regions in an
image corresponding to objects of any class. These are often inspired by human eye movements [9,
19]. Our goal instead is to devise a search strategy specific to one particular class, that can exploit
the relation between context appearance and the position of instances of that class in training images.

Closest to our work are techniques that consider vision with sequential fixations as a task-oriented
learning problem [4, 5, 21, 25]. Analog to our work, [5] reduces the number of window classifier
evaluations, avoiding the wasteful sliding window scheme. However, it only considers the output
of the window classifier and therefore cannot exploit context. Our search instead is driven by the
relation between the appearance of a window and the relative location of the object, as learned
from annotated training images. This has the added benefit of improving object detection accu-
racy compared to sliding windows. Importantly, to our knowledge, no previous approach has been
demonstrated on a dataset of difficulty similar to PASCAL VOC.

The rest of the paper is organized as follows. Sec. 2 gives an overview of our new method to localize
objects, followed by a detailed presentation in sec. 3. In sec. 4 we discuss the most important
implementation issues and conclude with experiments in sec. 5.
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(a) (b)
Figure 2: Displacement vector. (a) Three windows w l in a training image and their displacement vector d l .
(b) A test image. Applying d l to the current observation window w t results in the translated windows w t � d l .

2 Overview of our method

Our method detects an object in a test image with a sequential process, by evaluating one window
y t at each time step t. Over time, it gradually integrates these local observations into a global
estimate of the object location in the image. At each time step, it actively decides which window
to evaluate next based on all past observations, trying to acquire observations that will improve
the global location estimate. This decision process is learned from a set of images labeled with
ground-truth bounding-boxes on all instances of the object class. The key driving force here is the
statistical dependency between the position/appearance of a window and the ground-truth location
of the object (e.g. cars are often on roads; boats are often below sky). Our method first finds training
windows similar in position/appearance to the current window y t in the test image. Then, each
such training window votes for a possible object location in the test image through its displacement
vector relative to the ground-truth object (fig. 2). At each time step these votes are accumulated into
a probabilistic map of possible object locations (fig. 3). The maps are then integrated over time and
used to decide which window to evaluate next (sec. 3.1).

The behavior of our decision process is controlled by the weights of the various features in the
similarity measure used to compare windows in the test image to training windows. We adapt these
weights to each class by optimizing the accuracy by which the strategy localize training object
instances in a single time step (sec. 3.3).

The process involves comparing high-dimensional appearance descriptors between a test window
y t and hundreds of thousand training windows. We greatly reduce the cost of these comparisons by
embedding the descriptors in a lower-dimensional Hamming space using [14] (sec. 4).

3 Context-driven search

In this section we describe our method in detail. Given a test image x , it sequentially collects a fixed
number T of observations y t for windows w t before making a final detection decision. At each time
step t the next observation window is chosen based on all past observations. Thus, we try to solve
two tightly connected problems:

(1) At each time step t < T , given past observations y 1 . . . y t obtained for windows w 1 . . .w t we
need to actively choose the window w t +1 where to make the next observation y t +1. In section 3.1
we formalize this in terms of a mapping πS from past observations to the next observation window.
We refer to this mapping as our search policy (sec. 3.1).

(2) At the last time step t = T , given all observations y 1 . . . y T ,w 1 . . .w T , we need to make a final
decision about the object location. We refer to this mapping as our output policy πO (sec. 3.2).

The two problems are tied since the observations made at time steps 1 . . . T affect our ability to
detect the object. Hence, we want to pick a search policy πS that chooses windows leading to
observations that enable the output policy πO to make a good detection decision. In sec. 3.1 and 3.2
we explain how to tackle these problems individually. We then discuss how the parameters of the
search policy can be adapted to a particular class to optimize detection accuracy (sec. 3.3).
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