The Fixed Points of Off-Policy TD

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper SpotlightSlide Supplemental


J. Kolter


Off-policy learning, the ability for an agent to learn about a policy other than the one it is following, is a key element of Reinforcement Learning, and in recent years there has been much work on developing Temporal Different (TD) algorithms that are guaranteed to converge under off-policy sampling. It has remained an open question, however, whether anything can be said a priori about the quality of the TD solution when off-policy sampling is employed with function approximation. In general the answer is no: for arbitrary off-policy sampling the error of the TD solution can be unboundedly large, even when the approximator can represent the true value function well. In this paper we propose a novel approach to address this problem: we show that by considering a certain convex subset of off-policy distributions we can indeed provide guarantees as to the solution quality similar to the on-policy case. Furthermore, we show that we can efficiently project on to this convex set using only samples generated from the system. The end result is a novel TD algorithm that has approximation guarantees even in the case of off-policy sampling and which empirically outperforms existing TD methods.