
Appendix

5.1 Proof of Theorem 3

Theorem 3 is the main technical result of this paper. Proofs of other utility results (Theorem 4,
Theorem 5, and Corollary 6) can be obtained by simple modifications. The proof consists of the
following three lemmas.

The first lemma says that under condition (A3), if M̂ ′(θ) and M ′(θ) are close to each other, then so
are their zero points.
Lemma 9. Let Θ0 ⊆ Θ be a bounded neighborhood of θ∗ and νn → 0 be a positive sequence.
If M̂n(θ) is a sequence of continuously differentiable functions such that supΘ0

|M̂ ′n − M ′| =

OP (νn), and M(θ) satisfies (A3), then there exists a sequence θ̂n ∈ Θ0 such that M̂ ′n(θ̂n) = 0 and
|θ̂n − θ∗| = OP (νn).

Proof. The proof is elementary and we include it here for completeness. For simplicity we assume
d = 1.

Without loss of generality, we assume Θ0 = {θ : |θ − θ∗| ≤ s} for some positive s. By condition
(A3) we have for small enough s, there exists U > 0 such that M ′′(θ) ≥ U for all θ ∈ Θ0. Then we
have M ′(θ∗ − s) ≤ −Us and M ′(θ∗ + s) ≥ Us. Consider event En(s) := {supΘ0

|M̂ ′n −M ′| ≤
Us/2}. By the convergence assumption on |M̂ ′n − M ′| we have P (En(s)) → 1 as n → ∞.
On En(s) we have M̂ ′n(θ∗ − s) ≤ −Us/2 and M̂ ′n(θ∗ + s) ≥ Us/2. By continuity of M̂ ′n,
there exists a θ̂n ∈ Θ0 such that M̂ ′n(θ̂n) = 0. Using the lower bound of M ′′(θ) again, we have
|M ′(θ̂n)− M̂ ′n(θ̂n)| = |M ′(θ̂n)| ≥ U |θ̂n − θ∗|. Putting these together, we have for any A > 0,

P (|θ̂n − θ∗| ≥ Aνn)

≤P (ECn (s)) + P (En(s), |θ̂n − θ∗| ≥ Aνn)

≤P (ECn (s)) + P (|M̂ ′(θ̂n)−M ′(θ̂n)| ≥ AUνn)

=P (|M̂ ′(θ̂n)−M ′(θ̂n)| ≥ AUνn) + o(1).

Note that |M̂ ′(θ̂n)−M ′(θ̂n)| = OP (νn). The above inequality suggests |θ̂n − θ∗| = OP (νn).

Recall that

M(θ) = Em(X, θ),

Mn(θ) = n−1
n∑
i=1

m(Xi, θ).

The next lemma controls the distance between M ′ and M ′n, the sampling error term in eq. (8).
Lemma 10. Under assumptions (A1) and (A2), we have

sup
Θ0

|M ′(θ)−M ′n(θ)| = OP (1/
√
n). (10)

Proof. Lemma 10 is a typical result in empirical process theory. By Theorem 1.3 in [11] we have

P
(

sup
Θ0

|M ′(θ)−M ′n(θ)| ≥ A/
√
n
)
≤ C

(
A
√
p

)p
exp(−2A2),

which immediately implies the lemma.

The main condition required is the covering number condition. For a pair of functions gl(x) and
gu(x), define the bracket

[gl, gu] = {g(x) : gl ≤ g ≤ gu}.
The condition needed by our proof is that for any ε > 0, the set

G0 =

{
∂m(x, θ)

∂θ
: θ ∈ Θ0

}
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can be covered by at most (V/ε)p brackets [gl, gu] such that E(gl(X)− gu(X))2 ≤ ε2. It is easy to
check this condition using (A1) and (A2). More details can be found in [9, Example 19.7].

The third lemma controls the sum of additive Laplacian noises in the first term of the right hand side
of eq. (8). Without loss of generality, we assume Θ0 = {θ ∈ Rp : ||θ − θ∗||∞ ≤ s} for some
0 < s ≤ 1/2.

Lemma 11. Define F(θ) = zrg(ar, θ), where g(x, θ) = ∂m(x,θ)
∂θ . Under assumptions (A1) and

(A2), if hn � (
√

log n/n)2/(2+d), we have,

sup
Θ0

n|F(θ)| = OP

(
(
√

log n/n)2/(2+d)
)
.

Proof. The basic idea is to establish convergence rate for a finite set of θ’s in Θ0 and then extend
the convergence to the whole Θ0. For each δn > 0, Θ0 can be partitioned into Ln ≤ δ−pn cubes.
Let θ1, . . . , θL be the centers of these cubes, then for each θ ∈ Θ0 there exists an ` such that
||θ − θ`||2 ≤

√
pδn/2.

For a pair of positive numbers A and B, define events:

En,A :=
{

max
r
|zr| ≤ A log(h−dn )

}
, (11)

En,B :=

{
max

1≤`≤L
|F(θ`)| ≤ Bh−d/2n

√
log(n)

}
. (12)

First we have, by union bounds

P (ECn,A) ≤
∑
r

P (|zr| ≥ A log(h−dn ))

=h−dn exp(−αA log(h−dn )/2)

=h−dn
(
h−dn

)−αA/2
. (13)

From Lemma 12 introduced below we have for each θ,

P
(
|F(θ)| ≥ Bh−

d
2

n

√
log(n)

)
≤ 2 exp

(
−C min

(
Bαh

− d
2

n

√
log(n)

2C1
,
B2α2 log(n)

4C2
1

))
, (14)

where C is a universal constant. Since hn decays polynomially in n, the second term dominates the
rate for large n:

P
(
|F(θ)| ≥ Bh−d/2n

√
log(n)

)
≤ 2n−CB

2α2/4C2
1 .

Therefore we have a bound on the probability of En,B :

P (ECn,B) ≤ 2Lnn
−CB2α2/4C2

1 ≤ 2δ−pn n−CB
2α2/4C2

1 . (15)

Then for any θ ∈ Θ0, let ||θ` − θ||2 ≤
√
pδn/2. We have

|F(θ)| ≤|F(θ`)|+ |F(θ)− F(θ`)|

=|F(θ`)|+

∣∣∣∣∣∑
r

zr (g(ar, θ)− g(ar, θ`))

∣∣∣∣∣
≤|F(θ`)|+ C2

√
pδnh

−d
n max

r
|zr|/2, (16)

where the last inequality follows from the uniform bound on |zr| and the Lipschitz condition of
g(x, θ).

Then on En,A ∩ En,B we have,

sup
Θ0

|F(θ)| ≤ Bh−d/2n

√
log(n) + C2

√
pδnh

−d
n A log(h−dn )/2. (17)
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Ignoring constants, let hn = (
√

log n/n)2/(d+2) and δn = n−(d+1)/(d+2), then combine (17) with
(13) and (15) we have,

P

(
sup
θ∈Θ0

|F(θ)| ≥ B
√

log(n)nd/(d+2) +
C2
√
pdA

d+ 2
L̃n(d−1)/(d+2)

)
≤P (ECn,A) + P (ECn,B)

≤n−(αA−2)d/(d+2) + 2n−(CB2α2/4C2
1−p(d+1)/(d+2)) , (18)

where L̃ is a polynomial of log n and log log n. The above probability goes to zero polynomially in
n if

A >
1

α

(
3 +

2

d

)
and B >

2C1

√
p(d+ 1)

α
√
C(d+ 2)

.

The proof concludes by observing that
√

log nnd/(d+2) dominates L̃n(d−1)/(d+2) for large n.

The following lemma provides a concentration inequality for sums of double-exponential random
variables, which is used to establish equation (14).

Lemma 12 ([11]). Let z1, . . . , zK be i.i.d double-exponential random variables with density 1
2e
−|z|.

For every real-valued function f : RK 7→ R1, such that

K∑
k=1

|∂kf |2 ≤ λ2, and max
1≤k≤K

|∂kf | ≤ η, (19)

we have

P (f(z1, . . . , zK) ≥ Med(f) + t) ≤ exp

(
−C min

(
t

η
,
t2

λ2

))
,

where Med(f) is the median of f(z1, . . . , zk) and C ≥ 0 is some numerical constant.

For any given θ, consider F(θ) the LHS of (14) as a linear function of (zr : r ∈ {1, . . . , kn}d).
Note that z = αzr/2 has density 1

2e
|z|. Then it is easy to check that F(θ) satisfies (19) with

λ2 = 4C2
1h
−d
n α−2 and η = 2C1α

−1.
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