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This document contains additional technical details related to the work described in [1]. For brevity,
any constructs which here are left undefined are assumed to have the same meaning as in the main
document, and are referred, where necessary, to its appropriate sections.

1 Detecting Conflicting Actions Through Convex Optimization

As described in section 3.2.2 of [1], actionsa anda′ are said to beconflictingin local space if there
are two pointsb, b′ such thatMX

L b = MX
L b′, and whereφ(argmaxα∈Γ α · b)i 6= φ(argmaxα∈Γ α ·

b′)i for agenti. This means thatb andb′ are associated with different individual actions for that
agent, but are undistinguishable given only their marginalizationbL. We shall consider the action
with the highest value bound atbL (hereafter defined asa) as the expected best action to take. For
this action there already is at least one joint belief point for which it is maximal - the point which
generated the maximum value bound. The problem is then to findsomeb wherea′ 6= a is the
maximal action. Givenv = Ab andv′ = A′b, the vectors describing all possible values associated
with a anda′, the problem can then be described as the constrained optimization:

minimize max
i

vi −max
j

v
′
j

subject to v = Ab b � 0n

v
′ = A′b 1

T
n b = 1

MX
L b = bL

(1)

If the solution to this problem is negative, then we know thata′ is maximal at some pointb, which
means that neither action can be taken whithout further information. Unfortunately, the target func-
tion in this optimization is non-convex. Taking the epigraph of the first term of the target function,
the problem becomes:

minimize s−max
j

v
′
j

subject to Ab � 1ks b � 0n

v
′ = A′b 1

T
n b = 1

MX
L b = bL

(2)
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If the vectors in|Γa′

| (rows ofA′) are then taken individually, the problem trivially becomes the LP:

∀i = 1, . . . , |Γa′

| maximize Γa′

i b− s

subject to Ab � 1ks b � 0n

MX
L b = bL 1

T
n b = 1

(3)

An alternative is to introduce the slack variableξ in the constraints of (2):

Ab � 1ks b � 0n

A′b = 1k′s+ ξ 1
T
n b = 1

MX
L b = bL

(4)

If the maximum element ofξ is positive at someb, then we can safely conclude thatmaxi vi ≤
maxj v

′
j and therefore the actions are undecidable. The problem of maximizing the maximum

element ofξ, however, is only solvable by splittingξ into its positive and negative components,
ξ+ andξ−, and requiring that(ξ+)T · ξ− = 0. The latter constraint is itself non-convex, and at
best it increases the complexity of the optimization procedure beyond that of the exhaustive LP (3).
In order to contain this problem as an LP, we must then relax these constraints, and describe the
problem as:

maximize 1
T
k′ξ

subject to Ab � 1ks b � 0n

A′b = 1k′s+ ξ 1
T
n b = 1

MX
L b = bL

(5)

The target function in this optimization is not the same as inthe original problem (1), since it instead
seeks to find the pointb with the highest average difference between the maximum element ofv and
the values ofA′ (highest mean value ofξ). While the optimal solution to this problem is typically
achieved at a point whereξ has positive components, this is not necessarily so, and therefore we
must consider this as an approximate solution to the original problem. Since the vectors inA andA′

are arbitrary as long as the full value function is convex, itis also difficult to establish a bound on the
quality of this approximation. In practice, for the examples studied in the results of [1], we found
that using (5) instead of (3) does not noticeably affect the quality of the resulting communication
map, and allows us to scale better to larger domains.

The extension of (5) to the problem of finding a set of factorsG with no conflicting actions is
straightforward: we need only to simultaneously consider two symmetric problems, that of finding
a pointb wherea is maximal, and that of findingb′ wherea′ is maximal, while requiring that these
points are undistinguishable when projected toG. The full optimization is then:

maximize 1
T
k′ξ′ + 1

T
kξ

subject to Ab � 1ks A′b = 1k′s+ ξ MX
L b = bL

A′b′ � 1k′s′ Ab′ = 1ks
′ + ξ′ MX

L b′ = bL

b � 0n b′ � 0n MX
G b = MX

G b′

(6)
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2 Building the Communication Map

Below is a more detailed, pseudo-code description of the algorithm suggested in section 3.2.3 of [1].
The inputs to this algorithm are the set of local factors,L, the set of non-local factorsF , the value
functionV , and the number of desired samplesN . The output is a set of pairs〈bL,G〉 of local belief
points and associated communication decisions.

Algorithm 1 CreateCommunicationMap(L,F , V,N)

1: {Single LP (bL, a, a
′) refers to (5)}

2: {Full LP (factors, bL, a
′) refers to (6)}

3: Samples← sampleN reachable local belief pointsbL;
4: bounds← obtain local value bounds ofV ; Map← ∅;
5: for all bL ∈ Samples do
6: α′ ← argmaxα Vα(bL);
7: if Vα′(bL) ≥ Vα(bL) ∀α 6= α′ or Single LP (bL, a, a

′) > 0 ∀α 6= α′ then
8: Map←Map∪〈bL, ∅〉;
9: else

10: G ← ∅;H ← F/L;
11: while H is not emptydo
12: temp← remove factor fromH; factors← H∪G;
13: if Full LP (factors, bL, a

′) returns both negative solutionsthen
14: G ← temp;
15: end if
16: end while
17: Map←Map∪〈bL,G〉;
18: end if
19: end for
20: return Map

3 The OneDoor Scenario

We here provide further description of the OneDoor environment used in the results of [1]. In this
problem, originally introduced in [2], two agents operate in a grid-like world, represented in fig. 1,
and may each be in one of7 possible positions. One of the agents is know to be in positions1, 2 or 3
(with uniform probability) and has the goal of reaching position 5. The other starts in positions5, 6
or 7 and must reach position3. Each agent can move in any of the four directions, with an associated
probability of ending up in an unintended neighbor state, and can observe positions2, 4 and6 with
no noise. The remaining positions all produce the same observation, albeit also deterministically.
Therefore|Oi| = 4. The robots may share the same position, and they receive a penalty for being
both in position4 at the same time. They receive a positive reward for reachingtheir goal, and
no reward otherwise. The agents are uncoupled expect through the reward function (i.e. we here
assume a transition-observation independent version of the problem). Even so, this means that an
acceptable policy in this problem must be such that one of theagents waits for the other to clear the
“door” in position4 until it attempts to move there.

If a sufficiently large horizon is considered, as shown in [1], this problem allows for a significant
reduction in communication, using our method. This is because a near-optimal joint policy defines
wich agent should take priority, and since that agent alwaysmoves first, it rarely needs to commu-
nicate (only when the other agent has a sufficient probability of moving to position4 due to the
noise in its actions). The other agent, in turn, must communicate until its partner clears the door,
and afterwards, its local actions can also be taken independently and so it ceases communication.
For horizons smaller than10, however, the agents may not have enough decisions left to gather any
positive reward, and in these cases they both communicate inorder to avoid any possible collisions.
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Figure 1: Representation of the OneDoor scenario.
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