
Supplemental Material to the paper: A Two-Stage Weighting Framework for
Multi-Source Domain Adaptation

A: Proof of Lemma 1

Proof. Define Φ(S) = suph∈HE
S
α,β(h) − ÊSα,β(h). Changing the i-th point in the s-th source

affects Φ(S) by at most γsi = µβsαsi , while changing a point in the target affects Φ(S) by at most
γsi = 1/n (s = 0). Applying McDiarmid’s inequality [29] to Φ(S), the following holds with
probability at least 1− δ/2:
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Next, using standard techniques used in [17], we bound the expectation as follows:
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where the last step follows from the standard techniques for relating the Rademacher complexi-
ties [30], and G is a class of functions given by:

G = {x 7→ L(h′(x), h(x)) : h, h′ ∈ H}.

Thus, for any h ∈ H, the following holds with probability at least 1− δ/2:

ESα,β(h) ≤ ÊSα,β(h) + <S(H) +

√√√√(∑k
s=0

∑ns

i=1(γsi )2
)

log(2/δ)

2
.

Similarly, by defining Φ′(S) = suph∈H Ê
S
α,β(h)−ESα,β(h) and bounding the expectation of Φ′(S),

we can show that for any h ∈ H, the following holds with probability at least 1− δ/2:

ÊSα,β(h) ≤ ESα,β(h) + <S(H) +
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Thus, with probability at least 1− δ:
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Next, we bound <S(H) as follows [30]:
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where H|S is the restriction of H on S,
∏

H(m) is the growth function for H given by the maximum
number of ways m points can be classified by H, and e is the natural number.

B: Proof of Theorem 1

Proof. Let h∗ = arg minh∈H{εT (h) + εα,β(h)}. By the triangle inequality, we have

|εα,β(h)− εT (h)| ≤ |εα,β(h)− εα,β(h, h∗)|+ |εα,β(h, h∗)− εT (h, h∗)|+ |εT (h, h∗)− εT (h)|
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Next, we bound (1 + µ)εT (ĥ) as follows:
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Thus,
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Note that our proof follows a similar procedure in [19]. The main differences include (1) we employ
the weighted Rademacher complexity, which provides a tighter bound than the one in [19] based
on the VC dimension; (2) the empirical minimizer ĥ of our joint error function includes two terms
involving both source and target domain data with a differential weight µ, while the one in [19]
involves one term only. For the special case when µ = 1 and αsi ’s are given a uniform weight, i.e.,
αsi = 1/ns, our bound in (7) is strictly tighter than the one in [19] (due to the 1/2 factor in the last
term). In the general case with different choices of µ and αsi ’s, our bound can be further improved.

C: More details on the datasets and parameters used for the implementation of different
methods

The statistics of the test datasets used is summarized in Table 2.

Dataset Number of domains Dimension Number of classes
20 Newsgroups 13 100 2

Sentiment Analysis 4 200 2
Surface Electromyogram (SEMG) 8 12 4

Table 2: Statistics of the test datasets

The categories of 20 Newsgroups dataset that were used in the experiments as source and target
domains are as listed in Table 3.

20 Newsgroups
Categories inst
comp.os.ms-windows.misc 100
comp.sys.ibm.pc.hardware 100
comp.sys.mac.hardware 98
comp.windows.x 100
rec.motorcycles 100
rec.sport.baseball 100
rec.sport.hockey 100
sci.electronics 100
sci.med 100
sci.space 100
talk.politics.miseast 94
talk.politics.misc 78
talk.religion.misc 64

Table 3: Summary of categories (domains)

A Gaussian kernel with σ = 10 was used to compute the α values for each source. The weighted
hypothesis for each source was learned using Support Vector Machines implemented in the LibSVM
package, with a linear kernel and a regularization penalty C = 10. The β weights were computed
based on a binary similarity matrix, i.e., Wij = 0 if the i-th data point is among the N nearest
neighbors of the j-th data point or the j-th data point is among the N nearest neighbors of the i-th
data point; we set N = 10. We implemented TCA with a linear kernel and KMM with a Gaussian
kernel as they gave the best results. All parameters were tuned using 10-fold cross-validation.
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D: Additional empirical results

Figure 3 shows the α-weighted data samples in both source domain D1 and source domain D2 of
the toy data shown in Figure 1. We observe that data samples having similar marginal probabilities
in both the domains get higher weight, shown by the size of the points. The size of the points
are proportional to their weights. We also observe that since at this stage the source data is re-
weighted based only on marginal probability distribution difference, hence some of the data samples
from source domain D1 having conflicting conditional probabilities with target domain data also get
higher weight as they share similar marginal probability distributions.
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Figure 3: Data samples in source domains D1 and D2 re-weighted by αsi . We can observe that
points from source domain D1 also get large weights due to the similarity in marginal probabilities
(the size of a point is proportional to its weight).
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Figure 4: Data samples in the source domains D1 and D2 re-weighted by both αsi and βs. We
observe that the points with conflicting conditional probabilities get moderated by βs (the size of a
point is proportional to its weight).

Figure 4 shows the results of applying β-weights to the data samples in both source domain D1 and
source domain D2 of the toy data. We observe that the data samples in source domain D1 with
conflicting conditional probabilities get reduced when moderated with β weights, as source domain
D2 is more similar to target data in conditional probability distribution than the source domain D1.

Figure 5 shows the performance of 2SW-MDA on toy dataset shown in Figure 1 with varying µ.
The result is consistent with the theoretical result established in this paper.

Figure 6 shows the results of applying the proposed 2SW-MDA method on another set of toy dataset
consisting of two source domains and a target domain with different marginal and conditional proba-
bility differences. We observe that the distribution D1 which has conflicting conditional probabilities
with target domain data gets under-weighted by the proposed weighting scheme and hence transfer
happens mostly from the source distribution D2, which shares similar marginal and conditional
probability differences with the target domain. We get β value of 0.17 for D1 and 0.83 for D2.
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Figure 5: Performance of proposed 2SW-MDA method on the toy dataset shown in Figure 1 with
varying µ - Accuracy (%).
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Figure 6: Results on another toy dataset: First row shows the original distribution of two source
domains D1 and D2 and a target domain. The second and third rows show the results of applying
α and β weights, respectively. We observe that source domain data samples with similar marginal
and conditional probabilities get higher weight. The β values for D1 and D2 are 0.17 and 0.83
respectively, individual accuracies being 61.65% and 89.51% and proposed method gives 98.51%.
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