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1 Retrospective sampling for change point pi,t

Due to the non-conjugacy between the Poisson and multinomial distributions, the exact form of
its posterior distribution is difficult to compute. Additionally, in order to sample pi,t, we require
imputation of an infinite-dimensional process, and implementation of the sampling algorithm often
relies on finite approximations [1]. To address the above two problems, we design a retrospective
sampler, which allows us to obtain samples from the exact posterior distribution of pi,t, and no
truncation approximation is required. The retrospective sampler was proposed originally in [2] as an
inference engine for Dirichlet process hierarchical models, and in this paper we constitute another
application by inferring the Poisson distributed change points pi,t.

Denote Pi = maxt pi,t as the inferred maximum value of the change point in the current sampling
iteration; then, given the samples of all other latent variables, pi,t can be sampled from a Metropolis-
Hastings (M-H) step, where the proposed p? is generated from the following distribution:

q(pi,t = p?|θp
?

i,t , λi,t, ωi,t, li,t) ∝
{
p(pi,t = p?|λi,t)p(li,t|θp

?

i,t , ωi,t), for p? ≤ Pi

p(pi,t = p?|λi,t)M(li,t, Pi), for p? > Pi
(1)

where li,t = {li,n : t(i, n) = t} are all layer allocations of choices made by individual i at time
t. p(pi,t = p?|λi,t) = Poi(pi,t = p?|λi,t) follows a Poisson distribution, p(li,t|θp

?

i,t , ωi,t) =

Mult(li,t|{ωi,tθ̂
p?

i,t , (1 − ωi,t)θ̃
p?

i,t}) is the multinomial density function over the layer allocations
li,t, and M(li,t, Pi) is chosen according to (2) to ensure that the tails of the proposal distribution (1)
are heavier than the tails of the target probability which leads to faster mixing [2]:

M(li,t, Pi) = max
p?≤Pi

p(li,t|θp
?

i,t , ωi,t) (2)

The normalization constant of (1) is

C(Pi) =

Pi∑
p=1

p(pi,t = p|λi,t)p(li,t|θpi,t, ωi,t) +M(li,t, Pi)

(
1−

Pi∑
p=1

p(pi,t = p|λi,t)

)
The acceptance probability for the proposed pi,t = p? from the previous change point assignment
pi,t = p from the last iteration is defined as

αi,t(p, p
?) =


1, if p? ≤ Pi and P ?

i = Pi

min{1, C(Pi)M(li,t,P
?
i )

C(P?
i )p(li,t|θp

i,t,ωi,t)
}, if p? ≤ Pi and P ?

i < Pi

min{1, C(Pi)p(li,t|θp?

i,t ,ωi,t)

C(P?
i )M(li,t,Pi)

}, if p? > Pi

(3)

where P ?
i is the updated maximum value of change point after replace pi,t = p with pi,t = p?.

Through the M-H sampling step defined above, pi,t is updated from its exact posterior without
resorting to any approximation. The detailed derivation and discussion of the retrospective sampler
can be found in [2].
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