Supplementary Material: Efficient Label Tree Learning For Object Recognition

Jia Deng^{1,2}, Sanjeev Satheesh¹, Alexander C. Berg³, Li Fei-Fei¹ Computer Science Department, Stanford University¹ Computer Science Department, Princeton University² Computer Science Department, Stony Brook University³

1 Proofs

Lemma 1.1. For LP problem

 $\begin{array}{ll} \underset{x}{\mininize} & c^T x\\ subject \ to & Ax \leq b\\ & 0 \leq x \leq \end{array}$

where $A \in \mathbb{R}^{m \times n}$, m < n, if it is feasible, then there exists an optimal solution with at most m non-integer entries and such a solution can be found in polynomial time.

Proof. Let x^* be an optimal solution that an LP solver returns. Let B be the set of indices of entries in x^* that are non-integers, $B = \{i : x_i^* \in (0, 1)\}$ and let E be the rest of the indices.

If $|B| \le m$, then we are done. We now consider the case when |B| > m.

Let *H* be the polyhedron $H = \{x_B : c_B^T x_B = c^T x_B^*, A_B x_B = A_B x_B^*, 0 \le x_B \le 1\}$, where A_B is the columns indexed by *B*. Observe that any *x* such that $x_B \in H$ and $x_E = x_E^*$, is an also an optimal solution of the LP. That is, replacing the non-integer entries of x^* with those in *H* still gives an optimal solution.

Since $x_B^* \in H$, therefore H is non-empty. Also H is bounded. Hence there exists at least one *basic* feasible solution x_B' of H(Bertsimas & Tsitsiklis [1]), for which there are |B| linearly independent constraints that are active. Such a basic feasible solution can be found in polynomial time by solving an auxiliary LP by introducing additional artificial variables, the same as the Phase 1 of the simplex method. Details can be found in [1].

We now show that x'_B has at most m non-integer entries.

We first show that $\forall x_B \in \text{null}(A_B)$, $c_B^T x_B = 0$. Assume to the contrary that there exists $\hat{x}_B \in \text{null}(A_B)$ such that $c_B^T \hat{x}_B < 0$. Let $y^* \in \mathbb{R}^n$ be such that $y_B^* = x_B^* + \theta \hat{x}_B$ and $y_E^* = x_E^*$, where $\theta > 0$. It follows that for sufficiently small θ , y^* satisfies all contraints of the LP, since $Ay^* = Ax^* + \theta A_B \hat{x}_B = Ax^* \leq b$ and $0 \leq y_B^* = x_B^* + \theta \hat{x}_B \leq 1, 0 \leq y_E^* = x_E^* \leq 1$. Also the LP has a smaller value, since $c^T y^* = c^T x^* + \theta c_B^T \hat{x}_B < c^T x^*$, which is contradition.

If follows that $c_B \in \operatorname{null}(A_B)^{\perp} = \operatorname{row}(A_B)$. Therefore the number of linearly independent vectors among c_B and rows of A_B is at most m. Since x'_B has |B| > m linearly independent constraints that are active, at least |B| - m constraints from $0 \le x'_B \le 1$ must be active and therefore at least |B| - m entries of x'_B are integers. Hence x'_B has at most m non-integer entries.

We then replace the entries x_B^* in x^* with x_B' and obtain an optimal solution with at most m non-integer entries.

References

[1] D. Bertsimas and J.N. Tsitsiklis. Introduction to linear optimization. 1997. 1