A Proofs related to OMPR: Exact Recovery Case

Let us denote the objective function by f(z) = || Az — b||?. Let I, denote the support set of z* and I* be the support
set of z*. Define the sets
FA, =TL\I" (false alarms)
MD; =I"\I (missed detections)
CO=I;inI* (correct detections) .

As the algorithms proceed, elements move in and out of the current set I;. Let us give names to the set of found and
lost elements as we move from I; to Iy q:

Ft = It+l\It (found)
Lt = It\It-‘rl (IOSt) .

We first state two technical lemmas that we will need. These can be found in [19].
Lemma 13. For any S C [n], we have,
1T — ASAs| < 4y5).

Lemma 14. For any S,T C [n] such that SNT = (), we have,
|ASArl2 < 6jsur)-

Proof of Theorem 4
Lemma 15. Let 6o, < 1 — ﬁ, f(at) > 0. Then, in OMPR (1),

0 <2(2n — )f(2') < l25fp, 17 = llzfoa, 1.

1 —dop
Proof. Since x is the solution to the least squares problem min, || A7,z — b[|?,
Al (A2l —b)=0. (6)
Now, note that
1 *
F@') = Sl Anal, = Apat |,
Lot

= 5((fﬂzt)TA£ (Apaf, — Apat.) — (a7.)T AL (A ah, — Apal),
1 *
= _§($MDt)TA£IDt (Altxi — Ar-xl.), by (6)
1 *
= %(mMDt)TZ}:\E), by (3) @)
Hence,
23D, — Z}&\}rzl),,||2 = ||9€?\4D,,||2 + ||Z§vjrr11),||2 - Q(xMDt)Tzf\jﬁl)t
= |l@3rp, I” + 1255, 17 — 4nf (). ®)
That is,

dnf(2") < lladsp, I + 238 p, 1%,
< |l2}sp, II? I
=l = 2*I? + l2hip, II* = a1,

1

[l e 7 v [

+ ll2fa, I? + 260, — 280,

<15 [A(z" —a*)|* + 246 p, 17 = ll2Fa, 1% byRIP
— 02k
2
= F@) + 125 p, 117 = 125, 17,
1 — oy,
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where the third line follows from the fact that M D;, F'A;, and C'O; are disjoint sets.
As f(z') > 0and dg, < 1 — 2—177, the above inequality implies

0< 202~ 75 )f@") < 47, I = ok, I
O
Next, we provide a lemma that bounds the function value f(z") in terms of missed detections M D, and also zfv}%t.
Lemma 16. Let f(z') = 1|| Azt —b||%, b= Az*, dop, <1 — oy and 1 < 1. Then, at each step,
(L-n)? . 2 t 1 t+1 2
-_ < < ——— 9
Ihin | < Fa) € prmlhib ©)
Proof. Now, using Lemma 2 of [4] with I = M Dy, J = I;, y = App,yp, We get
fa") = g Az’ —b|?
= 3llAr (2" = 2*)1, = Aup, 23, I (10)
S\’
1 2 * 2
>3 (1 -1 5k> |Avip, @b,
8o \°
> 1 (1 - ) (1= 60 #5p, ] byRIP
Sor \’
1 2
O e
(1 — 252k)2 * 2
. 11
> S,y i ()

The assumption that do;, < 1— % and 7 < 1 implies that o5, < 1— % < 1/2. The function o — (1—2a)?/(2(1—a))
is decreasing on [0, 1/2] and hence (11) implies

2
1f2(1f2i)) (12
xt) > < ! 5 2 LT 2, 12
16 2 gy il = S ekl (12
Next, using (7) and Cauchy-Schwarz inequality:
fa")?
levp, 17 = 4% . (13)
”xMDt l
The result now follows using the above equation with (12). O

Lemma 17. Let 6o < 1 — ﬁ and 1/2 < n < 1. Then assuming f(z') > 0, at least one new element is found i.e.
F; # 0. Furthermore, y}tlHQ > Lef(at), where ¢ = min(4n(1 — n)?,2(2n — ﬁ)) > 0 is a constant.

Proof. We consider the following three exhaustive cases:

1. |Fy| < land |F;| < |[MDy|: Here, we first argue that F} # (). Assuming do, < 1 —1/2n, f(x¢) > 0 and
using Lemma 15,

123D, 11 > N1z a, Il

Also, |M D;| = |F A¢|. Using (3), z?;llt = x4, . Now partial hard-thresholding selects top I elements from
zt+1 hence at least one element of zh 4, must not have been selected in I;11(as M Dy should have at least
one larger element). Hence F}; and L; cannot be empty.
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Let S - |MDt\Ft‘, s.t., |S| = |Ft| — |MDt N Ft| NOW,
|SU(MDy 0 Fy)| = |Fy|, [(MD\Fy)\S| = |[MDy| — |Fyl.

Now, as y, consists of top F} elements of zt“ :
12650 Do P < llyr 1. (14)
Furthermore, since |F;| < [, hence every element of zj\/ﬁ,t\ P is smaller in magnitude than every element of
zt, A\ L,» Otherwise that element should have been included in F;. Furthermore, |MD;| — |Fy| = |FA| —
|L:| < |FA;\L¢|. Hence,
Iz sl < Iaan P < 21 (15)
Adding (14) and (15), we get:
25D, I1* < Ny 1P + e a, 1% (16)
Using above equation along with Lemma 15, we get:
1
lyk, 1% =2 (20 - ). a7
1 — dop

Now, note that if | F;| = 0, then yt+1 = 0 implying that f(z') = 0. Hence, at least one new element is added,

ie. y}“ £ 0.
2. |Fy| =1 < |MDy|: By definition ofytﬂ.

Iy 1% _ 57, II?
[Fl - [MDyf
Hence, using Lemma 16 and the fact that | F}| = I:
l
i 1P > (rppyn(L = n)*f(a) = an(t = n)*f(a"), (18)

as | M Dy| < k.
3. |F}| > |M Dy|: Since, y}'fl is the top most elements of 21, Hence, assuming |F;| > |M D],

e 12 > llevip, 1%

Now, using Lemma 16:
lyi I* = 4n(1 = n)* F(2"). (19)

We get the lemma by combining bounds for all the three cases, i.e., (17), (18), (19). O
Now we give a complete proof of Theorem 4.

Proof. We have,
F@™h) = fah) = ("™ —a)TATA@" - 2%) +1/2|AQy"™ — 2",

144
Q) e 4 s, 1) o)

where the second inequality follows by using the fact that ?JI o m 5= :ptjt+l Al and using RIP of order 2! (since
[supp(y' ! — z*)| = [F; U Ly| < 20).

Since xi is obtained using least squares,

< (yt+1 o xt)TATA(.’L‘t o .13*) +

AT A(z' —z*) = 0.
Thus, A%tA(xt —x*) = 0, because L; C I;. Next, note that

thfl = —nAT A" — 2*).
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Hence,

1+ 6y 1 1+ g
fy™h = fah) < <2 o lyz 1% + T||$it||2~ (21
Furthermore, since y**! is chosen based on the k largest entries in th:ll , we have,
lyw 1P = lz5 2 = 122017 = N, 1P

Plugging this into (21), we get:
1
P = fa) < (14 0= 1) Ik

Now, using Lemma 17, [[yF[|> > 4cf(2") and therefore,

FE) = ) < 1T - ) < —ap f)
where o = ¢ (1 + 091 — %) > 0 since (1 + dg;) < 1. Hence,
FE) < (- ap)f) < e fat).

The above inequality shows that at each iteration OMPR (I) reduces the objective function value by a fixed multi-
plicative factor. Furthermore, if 29 is chosen to have entries bounded by 1, then f (xo) < (1 + 62k )k. Hence, after

O(% log((1 + ok )k /€)) iterations, the function value reduces to ¢, i.e., f(z!) < e. O

B Proofs related to the LSH Section

Lemma 18. Let ||z|| = 1 for all points x in our database. Let x* be the nearest neighbor to v in Lo distance metric,

and let v"z* > ¢ > 0. Then, a (1 + «e)-nearest neighbor to v is also a (1 — €)-similar neighbor to v, where
2c

a< 1+rTr—2c°

Proof. Let 2’ be a (1 + ae)-nearest neighbor to 7, then:
I = r* < (1 + ae)|a” —r|*.

Using ||2’|| = ||z*|| = 1 and simplifying, we get:
rTa’ > 1 —e)rTa* + (a+ Derfz* — %(1 +rTr),
> (1 —e)rTa + ((a+1)c— %(1 +rTr))e.
Hence, 2’ is a (1 — €)-approximate similar neighbor to r if:
(a+1)c> %(1 +7Tr).
The result follows after simplification. O

We now provide a proof of Theorem 7.

Proof. Let us first consider a single step of OMPR . Now, similar to Lemma 15, we can show that if do;, < 1/4 —~ and
n=1-~7>0,then |27} > > 3|a} |/ Settinge =1 — \/g, implies that (1 — €) max |2}f 5, | > min |24, |,

i.e., a (1 — e)-similar neighbor to max |zﬁ}jt | will still lead to a constant decrease in the objective function.
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So, the goal is to ensure that with probability 1 — d, 6 > 0, for all the O(k) iterations, our LSH method returns at least
a (1 — ¢)-similar neighbor to max |thr1 | where e = 1 — \/E To this end, we need to ensure that at each step ¢, LSH

finds at least a (1 — ¢€)-similar neighbor to max |zt+1 | with probability at least 1 — §/k. Using Lemma 18, we need

to find a (1 + ae)-nearest neighbor to max |24}, | Where
- 2c
a< — =
“1+rTr—2¢
and 7T'z* > c. Using Lemma 17, a = O(1/k). Hence the result now follows using Theorem 6 (main text). O

C Extension to Noisy Case

In this section, we consider the noisy case in which our objective function is f(z) = || Az — b||?, where b = Az* +e
and e € R™ is the “noise” vector.

Let I; denote the support set of 2¢ and I* be the support set of z*. Define the sets

FA, =L\I" (false alarms)

MD; = I*"\I; (missed detections)

CO,=L;NI" (correct detections) .
Lemma 19. Let f(zt) > §|le||* and 631, < 1 — 2Dn where D = (\Fg Then,

137, 17 = l2foa, I* = ef (),

where ¢ = 2(\/>+1) (2nD —

) > 0.

521c

Proof. Since ' is the solution to the least squares problem min, [|Az,z — b|/?,
Af (Apah, —b) =0. (22)
Now, note that

1
flah) = 5\\%%1 —b|1?,
1
- 5(%)%{ (Ar, @, —b) — b7 (Aah, — b)),
1
= —EbT(A]t.rZ - b),

1, ., 1
= _i(xMDt)TAngt (Alﬁﬁrt —b) - ieT(AIt'T)}t —b),

= 5-(@iun, T hih, = 3¢ (Anal, —b) ©3)
where the third equality follows from (22).
Now,
||337VIDt ZHJBJP = HxMDt||2 + ||Z§vﬂ7f‘|2 - (xMDt)TZ}t\j[_ét
— e, |2+ 12555, 12 = 4n(f(at) + 2¢" (A at, — b)) 4)

2
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So,

0 < e P+ a2 = I + 578, 12 = 4n(7 (@) + 37 (Araf, — 1),
< ki I+ 2, I+ b0, = 260,12 = ke, I? + 12510, I2 = 4n(f(a) + 37 (Arzt, b)),
< llat =" = s, I + 12555, 17 — 4n(7(a) + 5" (Aral, — b)),
< 75 A =) = e, I+ 5D, 12 - an((a) + 57 (Arat, - ),
= T A = e = b, I+ b, I~ 4n(1 = <) f @)

Now, by assumption: f(z*) > $|le||*. Hence,

JA@t - )] < I|AG" — 27) — e + [lel,
JAGt — 27| < 2(1 + %wm

Hence,

1 1 1 2 t t+1 112 t 2
S S - < _
2 (277(1 \FC) R ﬁ) ) f(@") < \lz2yp, 17 = 254, |

where D = (\FH) Hence, ¢ = Z(f“) (2nD —

Now, by assumption do;, < 1 — 3 117 , s

) > 0. O

_62k

Next, we provide a lemma that bounds the function value f(z*) in terms of missed detection M D; and also 2417 .

MD;-
Lemma 20. Let f(2') = $[|Az’ — b[|2 > $le

2 b= Ax*+e 0o < 1 — 2Dn and D = €=VC Then, at each

step, wern®
e tun P < 16 < s E:;* D leith. P es)
Proof. First we lower bound f(z"):
fat) = THAHU Az® —el,
7(“1496 — Az™|| = lell) .
> s, min, 1o 4c") < el )
>

(L 20) e
Ve \ Vo) M ’

where last equality follows from Lemma 16. Using the above inequality with f(z?) > <2, we get:

(1 —252;)%C ek
2(1 — 0g) (VO + 1)2 M

The assumption that g, < 1 — D and Dy < 1 implies that o, < 1 — 55~ < 1/2. The function o + (1 —

flah) > 12 (26)

2Dn
200)?/(2(1 — «)) is decreasing on [0, 1/2] and hence the above equation implies
(1 _ Dn)2 *
L N @7)
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Now, we upper bound f(z?). Using definition of f(z?):

1 1
%(UCMDJTZR}}I = fz') + §€T(Alt$t1t — ).

Now, using Cauchy-Schwarz and f(z!) > <|le|?,

2
le" (Ar,z], = b)| < llelll Ar,2f, —bll < —= f(a").

VG
Hence,
1 * t+1 1 * T _t+1 1 t
%HIMD,,””ZMDtH > %(mJMD,,) Zyp, = (1= %)f(l’ )-
That is, )
1 f=)? (VC —1)?
L2 >yp? (1- — ) 222 > 4p(l— Dn)?———L ¢ 28
It = (1 5 ) E e = - oo S ) o9
where the second inequality follows from (27). O

Next, we present the following lemma that shows “enough” progress at each step:
Lemma 21. Let f(z') > $|e

is found i.e. Fy # (. Furthermore,
1%@)) > 0 is a constant.

2 1 _ 1
,n<landdoy <1-— 5D where D =1 — o Then at least one new element

yfng > Laf(at), where a = min(4n(1 — Dn)z(\/gglﬁﬂ(\ﬁcgl)g (2nD —

Proof. As for the exact case, we analyse the following three exhaustive cases:

1. |Fi| < land|F;| < |MD;|: Here we use the exactly similar argument as the exact case to obtain the following
inequality (see (16)):
120, 17 < Iy I + llaea, 17 (29)
Using Lemma 19, we get:
Iy ' 1* = ef (2"), (30)

where c is as defined in Lemma 19. Now, note that if |F}| = 0, then y}fl = 0 implying that f(z') = 0.

Hence, at least one new element is added, i.c., y}fl +0.

2. |Fy| =1 < |M Dy|: By definition ofy;:fl:

lyz 1P ll=hip, |I?
[Eel -~ [MDy|
Hence, using Lemma 20 and the fact that | F;| = I:
2 2
H112 5 _ 2(@—1) t >£ _ 2(\@_1) t
I 1P > oy = Do N @) = pan( - Do Y a6
as | M Dy| < k.

3. |Fi| > |M Dy|: Since, ygl is the top most elements of z*1. Hence, assuming | F;| > |M D],

Iy 12 > e, 1.

Now, using Lemma 20:

C-1)?
I 2 = a1 — DY g, (2)
CD
We get the lemma by combining bounds for all the three cases, i.e., (30), (31), (32). O

Now, we provide a proof of Theorem 2.
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Proof. We have,
Fly™) = fa') = (y"" = 2")TAT (42" = b) + 1/2]|A(y"™" — 2],

1496
< =ty AT (et )+ S e g g ). 63
where the second inequality follows by using the fact that y}jfm 5, = x}Hm 7, and using RIP of order 2/ (since

[supp(y**! —a)| = [F U Le| < 20).
Since mfjt is obtained using least squares,
Al (Az' —b) =
That is, A] (Az' —b) = 0, because Ly C I;. Next, note that
y}fl = —nAgt (Az' —b).

Hence,

L2 (34)

L
2 t

) - 1) < (4

Furthermore, since y**! is chosen based on largest entries in zf,jjl, we have,

lyz 1 = llzg 117 = Nl P I

125, = |2,

Plugging this into (34), we get:

FY - fah) < (1+@Z7Jn¢“w.

Now, using Lemma 21, ||y [|> > a.f(2') > 0 and therefore,
F@™) = f@@') < fy') = f(ah)
l
< _C/Ef(mt) )
1—7](1+521)

S5 @ > 0 since n(1 + d2;) < 1. The above inequality shows that at each iteration OMPR (1)

reduces the objective function value by a fixed multiplicative factor. Furthermore, if z° is chosen to have entries
bounded by 1, then f(z°) < O((1 + dax)k + |l€]|?). Hence, after O(% log((k + ||¢|?)/€)) iterations, the function
value reduces to C/le||?/2 + e. O

where ¢ =

D Analysis of 2-stage Algorithms

In this section, we consider the family of two-stage hard thresholding algorithms (see Algorithm 3) introduced by [17].

We now provide a simple analysis for the general two-stage hard thresholding algorithms. We first present a few
technical lemmas that we will need for our proof.

Lemma 22. Let b = Az*, where I* = supp(z*). Also, let x = argming, (=1 [|A7 — b||%. Then,

d1ur+|

————||27-\/l
2
\/ 1- 5\Iul*|

@ = a7+ lane P = @ - )] <
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Algorithm 3 Two-stage(])

1: Input: matrix A, vector b, sparsity level k

2: Initialize x!

3 fort =1to T do

top, ., < indices of top [ elements of [A” (Az" — b)]
Jt+1 — I; U tOpH_l

t+1 t+1
ZJt+1 AJt+1\b ZJt+1 —0

g Hk( t+1)

oy TRl

90 2l An,\b, :c+ —0
10: end for

A A

Proof. A similar inequality appears in [10] and we rewrite the proof here. Since x; is the solution to min,, || A;u—b||?,

A?(AISL‘[ - b) =0.
In the exact case, b = Ax*. Hence,
. *
o =il = [l =)0 o [0
Now, using (35):

0= [le =) 0ff Afa [7 1]

where G = [I I*\I]. Subtracting (37) from (36) we get,
o=l = flo =) O (1 = A Ac) | L)

-] N\ 1

< G|z — x*)zll\/ll(fv = a*)rl? + 27 1%

where the second inequality follows using Lemma 13. Lemma follows by just rearranging terms now.

We now present our main theroem and its proof for two-stage thresholding algorithms.

(35)

(36)

(37)

(38)

Theorem 23. Suppose the vector z* € R" is k-sparse and binary. Then Two-stage(l) recovers x* from measurements

b = Ax* in O(k) iterations provided.:
Ook41 < .35

Proof. As z'*! is the least squares solution over support set .J; | 1, hence:
G e f( PEFICanEFICHH
where 53111 = (zt —nAT (Az* — b)), = 1+6 and st’Ll =0.
Now,
P = Flat) = (57 — 2T AT (At —8) + S As — gt
Now, as x" is the least squares solution over I;. Hence, AT (Az' — b) = 0. Hence,

(st —ah, =0, (s - xt)tole = A Azt —b), (s"T —ah);

top,+1( Ji41

Using (40) and (41):

2
"
P = f@") = =nll Ay, (A2" = B)I” + [ Avop, ,, Alop, ,, (A" = D)%,

(1+5z)

< =l Afep,,, (A" = b)|* + (Az" = b)|I?,

— DA (Act — )|

9 177t0p; 4y

1A

top, 41

18
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(39)

(40)

(41)

(42)



Now, let M D, be the set of missed detections, i.e., M D, = I*\I t. Then, by definition of top;y1:

l
AT Azt = 0)|?>min (1, — | |4 Azt — )2, 43
4%, (Aa' = B)I 2 min (1, 7y ) 14T, (Ae' ) “3)
Furthermore,
| Adip, (Az* = )| = [|AY;p, Avp.@hsp, — Abrp, Ar (2 — )1, |,
> HAZJQD,,AMD@MDJ\ ||AMDfAIt (xt — "), 1],

52

ﬁ” MDtH

>(1- 5k)||x7th|| - (44)

where last inequality follows using Lemma 14 and Lemma 22.

Hence, using (42), (43), and (44):

2
1 ) l 62 .
f“””‘f“”<f“””‘f““<‘2u+@fm“QWMDﬁ>(”_&‘\ﬁg%a>MM“W'(M)

Next, we upper bound increase in the objective function by removing ! elements from z¢*1.
1
F™Y) = FE) = (g = 2 HTAT (A~ b) 4 5[4y — AR,

1
= 5l Ay — A

1+5l 41
L e,

(46)

where the second equation follows as z‘T! is a least squares solution, and both y*+1, 21

Ji+1. The third equation follows from RIP and the fact that LA — y"‘Jrl

s support is a subset of

Tip1 = Jligre
Now, using Lemma 22:
(52
t+1 2 2k+1 * 2
125 o™ < m“xﬁ\@ﬂn : (47)
Furthermore, | Jz41\It4+1| = I < |Je1\I*|. Hence, by definition of I; 1,
25 pe I < e 25 1 P
Jt+1\1t+1 ‘Jt+1\l*| Jt+1\I*
Using above equation and (47), we get:
||Zt+1 H2 l 6§k+l Hx* ”2 (48)
Jep1\Te+1 |J \I*| 1-— 6gk+l I\ Jpgpq Il

Also, |J; 1 \I*| = 1 + [I*\Js41| < 1+ |MDy|. Using (46), (48), and the fact that f(z‘T!) < f(y'*!) and each

xp. = 1:

l 149, 6§k+l
f It+1 7f Zt+1 S
I S TR 1S G

FARW/EY (49)

Adding (45) and (49), we get:

1

f(xt—H) - f(ft) < —m

2
2 T 1 5 262
min (|MDyl,1) (1—§k_ O ) L\ (14 01)%0%;, 4,

V1-43, P [T\Jea ] 1=03,
(50)
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1)\ Je 41 . « .
Now, 2t < min(l, [\ Ji41|) < min(l, |M Dy).

Hence,

2
Fat ) f(at) < - min( [MDi) (1_ 5 O )_(1+6l>26§k+l 1)

2(1+¢) 1 —5§k+l

Now consider:

2
83, (1+60)%055 4, 1
_ . __zk _ > _ _ 52 _ 52 2 1 5 252
(1 & 13, 1—0% 4 I e T <((1 O2itt)\f 1= O = O2pa)” = (14 O2ist) 2]”[)’

> 0.01, (52)

where the second inequality follows by substituting dof 1 < .35.
Hence, using (51) and (52), we have:
f(z™) < f(z") — min(l, [M Dy|) - 0.0001. (53)

The above equation guarantees convergence to the optima in at least O(k) steps although faster convergence can be
shown for larger k. O

Corollary 24. Cosamp converges to the optima provided

041, < 0.35.
Corollary 25. Subspace-Pursuit converges to the optima provided

03 < 0.35.

Note that CoSamp’s analysis given by [19] requires d4, < 0.1 while Subspace pursuit’s analysis given by [4] requires
03 < 0.205. Note that our generic analysis provides significantly better guarantees for both the methods.
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