
A Proofs related to OMPR: Exact Recovery Case

Let us denote the objective function by f(x) = 1
2‖Ax− b‖2. Let It denote the support set of xt and I⋆ be the support

set of x⋆. Define the sets

FAt = It\I⋆ (false alarms)

MDt = I⋆\It (missed detections)

COt = It ∩ I⋆ (correct detections) .

As the algorithms proceed, elements move in and out of the current set It. Let us give names to the set of found and
lost elements as we move from It to It+1:

Ft = It+1\It (found)

Lt = It\It+1 (lost) .

We first state two technical lemmas that we will need. These can be found in [19].

Lemma 13. For any S ⊂ [n], we have,
‖I − AT

SAS‖ ≤ δ|S|.

Lemma 14. For any S, T ⊂ [n] such that S ∩ T = ∅, we have,
‖AT

SAT ‖2 ≤ δ|S∪T |.

Proof of Theorem 4

Lemma 15. Let δ2k < 1 − 1
2η
, f(xt) > 0. Then, in OMPR (l),

0 < 2(2η − 1

1 − δ2k

)f(xt) ≤ ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2.

Proof. Since xt
It
is the solution to the least squares problem minx ‖AIt

x − b‖2,

AT
It

(AIt
xt

It
− b) = 0. (6)

Now, note that

f(xt) =
1

2
‖AIt

xt
It
− AI⋆x⋆

I⋆‖2,

=
1

2
((xt

It
)T AT

It
(AIt

xt
It
− AI⋆x⋆

I⋆) − (x⋆
I⋆)T AT

I⋆(AIt
xt

It
− AI⋆x⋆

I⋆)),

= −1

2
(x⋆

MDt
)T AT

MDt
(AIt

xt
It
− AI⋆x⋆

I⋆), by (6)

=
1

2η
(x⋆

MDt
)T zt+1

MDt
. by (3) (7)

Hence,

‖x⋆
MDt

− zt+1
MDt

‖2 = ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2 − 2(x⋆
MDt

)T zt+1
MDt

= ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2 − 4ηf(xt). (8)

That is,

4ηf(xt) ≤ ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2,

≤ ‖x⋆
MDt

‖2 + ‖xt
FAt

‖2 + ‖xt
COt

− x⋆
COt

‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2,

= ‖xt − x⋆‖2 + ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2,

≤ 1

1 − δ2k

‖A(xt − x⋆)‖2 + ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2, by RIP

=
2

1 − δ2k

f(xt) + ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2,
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where the third line follows from the fact that MDt, FAt, and COt are disjoint sets.

As f(xt) > 0 and δ2k < 1 − 1
2η
, the above inequality implies

0 < 2(2η − 1

1 − δ2k

)f(xt) ≤ ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2.

Next, we provide a lemma that bounds the function value f(xt) in terms of missed detections MDt and also zt+1
MDt

.

Lemma 16. Let f(xt) = 1
2‖Axt − b‖2, b = Ax∗, δ2k < 1 − 1

2η
and η < 1. Then, at each step,

(1 − η)2

η
‖x⋆

MDt
‖2 ≤ f(xt) ≤ 1

4η(1 − η)2
‖zt+1

MDt
‖2 (9)

Proof. Now, using Lemma 2 of [4] with I = MDt, J = It, y = AMDt
x⋆

MDt
we get

f(xt) = 1
2‖Axt − b‖2

= 1
2‖AIt

(xt − x⋆)It
− AMDt

x⋆
MDt

‖2 (10)

≥ 1
2

(

1 − δ2k

1 − δk

)2

‖AMDt
x⋆

MDt
‖2

≥ 1
2

(

1 − δ2k

1 − δk

)2

(1 − δk)‖x⋆
MDt

‖2 by RIP

≥ 1
2

(

1 − δ2k

1 − δ2k

)2

(1 − δ2k)‖x⋆
MDt

‖2

≥ (1 − 2δ2k)2

2(1 − δ2k)
‖x⋆

MDt
‖2 (11)

The assumption that δ2k < 1− 1
2η

and η < 1 implies that δ2k < 1− 1
2η

< 1/2. The function α 7→ (1−2α)2/(2(1−α))

is decreasing on [0, 1/2] and hence (11) implies

f(xt) ≥

(

1 − 2(1 − 1
2η

)
)2

2(1 − 1 + 1
2η

)
‖x⋆

MDt
‖2 =

(1 − η)2

η
‖x⋆

MDt
‖2. (12)

Next, using (7) and Cauchy-Schwarz inequality:

‖zt+1
MDt

‖2 ≥ 4η2 f(xt)2

‖x⋆
MDt

‖2
. (13)

The result now follows using the above equation with (12).

Lemma 17. Let δ2k < 1 − 1
2η
and 1/2 < η < 1. Then assuming f(xt) > 0, at least one new element is found i.e.

Ft 6= ∅. Furthermore, ‖yt+1
Ft

‖2 > l
k
cf(xt), where c = min(4η(1 − η)2, 2(2η − 1

1−δ2k

)) > 0 is a constant.

Proof. We consider the following three exhaustive cases:

1. |Ft| < l and |Ft| < |MDt|: Here, we first argue that Ft 6= ∅. Assuming δ2k < 1 − 1/2η, f(xt) > 0 and
using Lemma 15,

||zt+1
MDt

|| > ||xt
FAt

||.
Also, |MDt| = |FAt|. Using (3), zt+1

FAt
= xt

FAt
. Now partial hard-thresholding selects top l elements from

zt+1, hence at least one element of xt
FAt

must not have been selected in It+1(as MDt should have at least

one larger element). Hence Ft and Lt cannot be empty.
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Let S ⊆ |MDt\Ft|, s.t., |S| = |Ft| − |MDt ∩ Ft|. Now,
|S ∪ (MDt ∩ Ft)| = |Ft|, |(MDt\Ft)\S| = |MDt| − |Ft|.

Now, as yFt
consists of top Ft elements of zt+1

MDt
:

‖zt+1
S∪(MDt∩Ft)

‖2 ≤ ‖yFt
‖2. (14)

Furthermore, since |Ft| < l, hence every element of zt+1
MDt\Ft

is smaller in magnitude than every element of

xt
FAt\Lt

, otherwise that element should have been included in Ft. Furthermore, |MDt| − |Ft| = |FAt| −
|Lt| ≤ |FAt\Lt|. Hence,

‖zt+1
(MDt\Ft)\S

‖2 ≤ ‖xt
FAt\Lt

‖2 ≤ ‖xt
FAt

‖2, (15)

Adding (14) and (15), we get:

‖zt+1
MDt

‖2 ≤ ‖yt+1
Ft

‖2 + ‖xt
FAt

‖2. (16)

Using above equation along with Lemma 15, we get:

‖yt+1
Ft

‖2 ≥ 2

(

2η − 1

1 − δ2k

)

f(xt). (17)

Now, note that if |Ft| = 0, then yt+1
Ft

= 0 implying that f(xt) = 0. Hence, at least one new element is added,

i.e., yt+1
Ft

6= ∅.
2. |Ft| = l < |MDt|: By definition of yt+1

Ft
:

‖yt+1
Ft

‖2

|Ft|
≥

‖zt+1
MDt

‖2

|MDt|
.

Hence, using Lemma 16 and the fact that |Ft| = l:

‖yt+1
Ft

‖2 ≥ l

|MDt|
4η(1 − η)2f(xt) ≥ l

k
4η(1 − η)2f(xt), (18)

as |MDt| ≤ k.

3. |Ft| ≥ |MDt|: Since, yt+1
Ft

is the top most elements of zt+1. Hence, assuming |Ft| ≥ |MDt|,

‖yt+1
Ft

‖2 ≥ ‖zt+1
MDt

‖2.

Now, using Lemma 16:

‖yt+1
Ft

‖2 ≥ 4η(1 − η)2f(xt). (19)

We get the lemma by combining bounds for all the three cases, i.e., (17), (18), (19).

Now we give a complete proof of Theorem 4.

Proof. We have,

f(yt+1) − f(xt) = (yt+1 − xt)T AT A(xt − x⋆) + 1/2‖A(yt+1 − xt)‖2,

≤ (yt+1 − xt)T AT A(xt − x⋆) +
(1 + δ2l)

2
(‖yt+1

Ft
‖2 + ‖xt

Lt
‖2). (20)

where the second inequality follows by using the fact that yt+1
It+1∩It

= xt
It+1∩It

and using RIP of order 2l (since

| supp(yt+1 − xt)| = |Ft ∪ Lt| ≤ 2l).

Since xt
It
is obtained using least squares,

AT
It

A(xt − x⋆) = 0.

Thus, AT
Lt

A(xt − x⋆) = 0, because Lt ⊆ It. Next, note that

yt+1
Ft

= −ηAT
Ft

A(xt − x⋆).

12



Hence,

f(yt+1) − f(xt) ≤
(

1 + δ2l

2
− 1

η

)

‖yt+1
Ft

‖2 +
1 + δ2l

2
‖xt

Lt
‖2. (21)

Furthermore, since yt+1 is chosen based on the k largest entries in zt+1
Jt+1

, we have,

‖yt+1
Ft

‖2 = ‖zt+1
Ft

‖2 ≥ ‖zt+1
Lt

‖2 = ‖xt
Lt
‖2 .

Plugging this into (21), we get:

f(yt+1) − f(xt) ≤
(

1 + δ2l −
1

η

)

‖yt+1
Ft

‖2 .

Now, using Lemma 17, ‖yt+1
Ft

‖2 ≥ l
k
cf(xt) and therefore,

f(xt+1) − f(xt) ≤ f(yt+1) − f(xt) ≤ −α
l

k
f(xt)

where α = c
(

1 + δ2l − 1
η

)

> 0 since η(1 + δ2l) < 1. Hence,

f(xt+1) ≤ (1 − α
l

k
)f(xt) ≤ e−α l

k f(xt).

The above inequality shows that at each iteration OMPR (l) reduces the objective function value by a fixed multi-
plicative factor. Furthermore, if x0 is chosen to have entries bounded by 1, then f(x0) ≤ (1 + δ2k)k. Hence, after
O(k

l
log((1 + δ2k)k/ǫ)) iterations, the function value reduces to ǫ, i.e., f(xt) ≤ ǫ.

B Proofs related to the LSH Section

Lemma 18. Let ‖x‖ = 1 for all points x in our database. Let x∗ be the nearest neighbor to r in L2 distance metric,

and let r
T x∗ ≥ c > 0. Then, a (1 + αǫ)-nearest neighbor to r is also a (1 − ǫ)-similar neighbor to r, where

α ≤ 2c
1+r

T
r−2c

.

Proof. Let x′ be a (1 + αǫ)-nearest neighbor to r, then:

‖x′ − r‖2 ≤ (1 + αǫ)‖x∗ − r‖2.

Using ‖x′‖ = ‖x∗‖ = 1 and simplifying, we get:

r
T x′ ≥ (1 − ǫ)rT x∗ + (α + 1)ǫrT x∗ − αǫ

2
(1 + r

T
r),

≥ (1 − ǫ)rT x∗ + ((α + 1)c − α

2
(1 + r

T
r))ǫ.

Hence, x′ is a (1 − ǫ)-approximate similar neighbor to r if:

(α + 1)c ≥ α

2
(1 + r

T
r).

The result follows after simplification.

We now provide a proof of Theorem 7.

Proof. Let us first consider a single step of OMPR . Now, similar to Lemma 15, we can show that if δ2k < 1/4−γ and

η = 1− γ, γ > 0, then ‖zt+1
MDt

‖2 > 3
2‖xt

FAt
‖2. Setting ǫ = 1−

√

2
3 , implies that (1− ǫ)max |zt+1

MDt
| ≥ min |xt

FAt
|,

i.e., a (1 − ǫ)-similar neighbor to max |zt+1
MDt

| will still lead to a constant decrease in the objective function.
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So, the goal is to ensure that with probability 1− δ, δ > 0, for all the O(k) iterations, our LSH method returns at least

a (1 − ǫ)-similar neighbor to max |zt+1
MDt

| where ǫ = 1−
√

2
3 . To this end, we need to ensure that at each step t, LSH

finds at least a (1 − ǫ)-similar neighbor to max |zt+1
MDt

| with probability at least 1 − δ/k. Using Lemma 18, we need

to find a (1 + αǫ)-nearest neighbor to max |zt+1
MDt

|, where

α ≤ 2c

1 + r
T
r − 2c

,

and r
T x∗ ≥ c. Using Lemma 17, α = O(1/k). Hence the result now follows using Theorem 6 (main text).

C Extension to Noisy Case

In this section, we consider the noisy case in which our objective function is f(x) = 1
2‖Ax− b‖2, where b = Ax∗ + e

and e ∈ R
m is the “noise” vector.

Let It denote the support set of xt and I⋆ be the support set of x⋆. Define the sets

FAt = It\I⋆ (false alarms)

MDt = I⋆\It (missed detections)

COt = It ∩ I⋆ (correct detections) .

Lemma 19. Let f(xt) ≥ C
2 ‖e‖2 and δ2k < 1 − 1

2Dη
, where D = C−

√
C

(
√

C+1)2
. Then,

‖zt+1
MDt

‖2 − ‖xt
FAt

‖2 ≥ cf(xt),

where c = 2 (
√

C+1)2

C
(2ηD − 1

1−δ2k

) > 0.

Proof. Since xt
It
is the solution to the least squares problem minx ‖AIt

x − b‖2,

AT
It

(AIt
xt

It
− b) = 0. (22)

Now, note that

f(xt) =
1

2
‖AIt

xt
It
− b‖2,

=
1

2
((xt

It
)T AT

It
(AIt

xt
It
− b) − bT (AIt

xt
It
− b)),

= −1

2
bT (AIt

xt
It
− b),

= −1

2
(x∗

MDt
)T AT

MDt
(AIt

xt
It
− b) − 1

2
eT (AIt

xt
It
− b),

=
1

2η
(x⋆

MDt
)T zt+1

MDt
− 1

2
eT (AIt

xt
It
− b), (23)

where the third equality follows from (22).

Now,

‖x⋆
MDt

− zt+1
MDt

‖2 = ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2 − 2(x⋆
MDt

)T zt+1
MDt

= ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)) (24)
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So,

0 ≤ ‖x⋆
MDt

‖2 + ‖xt
FAt

‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)),

≤ ‖x⋆
MDt

‖2 + ‖xt
FAt

‖2 + ‖xt
COt

− x⋆
COt

‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)),

≤ ‖xt − x∗‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)),

≤ 1

1 − δ2k

‖A(xt − x∗)‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)),

=
1

1 − δ2k

‖A(xt − x∗)‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(1 − 1√
C

)f(xt).

Now, by assumption: f(xt) ≥ C
2 ‖e‖2. Hence,

‖A(xt − x∗)‖ ≤ ‖A(xt − x∗) − e‖ + ‖e‖,

‖A(xt − x∗)‖2 ≤ 2(1 +
1√
C

)2f(xt).

Hence,

2

(

2η(1 − 1√
C

) − 1

1 − δ2k

(1 +
1√
C

)2
)

f(xt) ≤ ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2

Now, by assumption δ2k < 1 − 1
2Dη

, where D = (
√

C+1)2

C−
√

C
. Hence, c = 2 (

√
C+1)2

C
(2ηD − 1

1−δ2k

) > 0.

Next, we provide a lemma that bounds the function value f(xt) in terms of missed detection MDt and also zt+1
MDt

.

Lemma 20. Let f(xt) = 1
2‖Axt − b‖2 ≥ C

2 ‖e‖2, b = Ax∗ + e, δ2k < 1 − 1
2Dη

and D = C−
√

C

(
√

C+1)2
. Then, at each

step,

(1 − η)2C

η(
√

C + 1)2
‖x⋆

MDt
‖2 ≤ f(xt) ≤ 1

4η(1 − η)2
(
√

C + 1)2

(
√

C − 1)2
‖zt+1

MDt
‖2 (25)

Proof. First we lower bound f(xt):

√

f(xt) =
1√
2
‖Axt − Ax∗ − e‖,

≥ 1√
2

(

‖Axt − Ax∗‖ − ‖e‖
)

,

≥ 1√
2

(

min
x : xĪt

=0
‖Ax − Ax∗‖ − ‖e‖

)

,

≥ 1√
2

(

(1 − 2δ2k)
√

(1 − δ2k)
‖x⋆

MDt
‖ − ‖e‖

)

,

where last equality follows from Lemma 16. Using the above inequality with f(xt) ≥ C
2 ‖e‖2, we get:

f(xt) ≥ (1 − 2δ2k)2C

2(1 − δ2k)(
√

C + 1)2
‖x⋆

MDt
‖2. (26)

The assumption that δ2k < 1 − 1
2Dη

and Dη < 1 implies that δ2k < 1 − 1
2Dη

< 1/2. The function α 7→ (1 −
2α)2/(2(1 − α)) is decreasing on [0, 1/2] and hence the above equation implies

f(xt) ≥ (1 − Dη)2

Dη
‖x⋆

MDt
‖2. (27)
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Now, we upper bound f(xt). Using definition of f(xt):

1

2η
(x⋆

MDt
)T zt+1

MDt
= f(xt) +

1

2
eT (AIt

xt
It
− b).

Now, using Cauchy-Schwarz and f(xt) ≥ C
2 ‖e‖2,

∣

∣eT (AIt
xt

It
− b)

∣

∣ ≤ ‖e‖‖AIt
xt

It
− b‖ ≤ 2√

C
f(xt).

Hence,
1

2η
‖x⋆

MDt
‖‖zt+1

MDt
‖ ≥ 1

2η
(x⋆

MDt
)T zt+1

MDt
≥ (1 − 1√

C
)f(xt).

That is,

‖zt+1
MDt

‖2 ≥ 4η2

(

1 − 1√
C

)2
f(xt)2

‖x⋆
MDt

‖2
≥ 4η(1 − Dη)2

(
√

C − 1)2

CD
f(xt), (28)

where the second inequality follows from (27).

Next, we present the following lemma that shows “enough” progress at each step:

Lemma 21. Let f(xt) ≥ C
2 ‖e‖2, η < 1 and δ2k < 1 − 1

2Dη
, where D = 1 − 1√

C−1
. Then at least one new element

is found i.e. Ft 6= ∅. Furthermore, ‖yt+1
Ft

‖ > l
k
αf(xt), where α = min(4η(1 − Dη)2 (

√
C−1)2

CD
, 2 (

√
C+1)2

C
(2ηD −

1
1−δ2k

)) > 0 is a constant.

Proof. As for the exact case, we analyse the following three exhaustive cases:

1. |Ft| < l and |Ft| < |MDt|: Here we use the exactly similar argument as the exact case to obtain the following
inequality (see (16)):

‖zt+1
MDt

‖2 ≤ ‖yt+1
Ft

‖2 + ‖xt
FAt

‖2. (29)

Using Lemma 19, we get:

‖yt+1
Ft

‖2 ≥ cf(xt), (30)

where c is as defined in Lemma 19. Now, note that if |Ft| = 0, then yt+1
Ft

= 0 implying that f(xt) = 0.

Hence, at least one new element is added, i.e., yt+1
Ft

6= ∅.
2. |Ft| = l < |MDt|: By definition of yt+1

Ft
:

‖yt+1
Ft

‖2

|Ft|
≥

‖zt+1
MDt

‖2

|MDt|
.

Hence, using Lemma 20 and the fact that |Ft| = l:

‖yt+1
Ft

‖2 ≥ l

|MDt|
4η(1 − Dη)2

(
√

C − 1)2

CD
f(xt) ≥ l

k
4η(1 − Dη)2

(
√

C − 1)2

CD
f(xt), (31)

as |MDt| ≤ k.

3. |Ft| ≥ |MDt|: Since, yt+1
Ft

is the top most elements of zt+1. Hence, assuming |Ft| ≥ |MDt|,

‖yt+1
Ft

‖2 ≥ ‖zt+1
MDt

‖2.

Now, using Lemma 20:

‖yt+1
Ft

‖2 ≥ 4η(1 − Dη)2
(
√

C − 1)2

CD
f(xt). (32)

We get the lemma by combining bounds for all the three cases, i.e., (30), (31), (32).

Now, we provide a proof of Theorem 2.
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Proof. We have,

f(yt+1) − f(xt) = (yt+1 − xt)T AT (Axt − b) + 1/2‖A(yt+1 − xt)‖2,

≤ (yt+1 − xt)T AT (Axt − b) +
(1 + δ2l)

2
(‖yt+1

Ft
‖2 + ‖xt

Lt
‖2). (33)

where the second inequality follows by using the fact that yt+1
It+1∩It

= xt
It+1∩It

and using RIP of order 2l (since

| supp(yt+1 − xt)| = |Ft ∪ Lt| ≤ 2l).

Since xt
It
is obtained using least squares,

AT
It

(Axt − b) = 0.

That is, AT
Lt

(Axt − b) = 0, because Lt ⊆ It. Next, note that

yt+1
Ft

= −ηAT
Ft

(Axt − b).

Hence,

f(yt+1) − f(xt) ≤
(

1 + δ2l

2
− 1

η

)

‖yt+1
Ft

‖2 +
1 + δ2l

2
‖xt

Lt
‖2. (34)

Furthermore, since yt+1 is chosen based on largest entries in zt+1
Jt+1

, we have,

‖yt+1
Ft

‖2 = ‖zt+1
Ft

‖2 ≥ ‖zt+1
Lt

‖2 = ‖xt
Lt
‖2 .

Plugging this into (34), we get:

f(yt+1) − f(xt) ≤
(

1 + δ2l −
1

η

)

‖yt+1
Ft

‖2 .

Now, using Lemma 21, ‖yt+1
Ft

‖2 ≥ αf(xt) > 0 and therefore,

f(xt+1) − f(xt) ≤ f(yt+1) − f(xt)

≤ −c′
l

k
f(xt) ,

where c′ = 1−η(1+δ2l)
η(1+δ2l)

α > 0 since η(1 + δ2l) < 1. The above inequality shows that at each iteration OMPR (l)

reduces the objective function value by a fixed multiplicative factor. Furthermore, if x0 is chosen to have entries

bounded by 1, then f(x0) ≤ O((1 + δ2k)k + ‖e‖2). Hence, after O(k
l
log((k + ‖e‖2)/ǫ)) iterations, the function

value reduces to C‖e‖2/2 + ǫ.

D Analysis of 2-stage Algorithms

In this section, we consider the family of two-stage hard thresholding algorithms (see Algorithm 3) introduced by [17].

We now provide a simple analysis for the general two-stage hard thresholding algorithms. We first present a few
technical lemmas that we will need for our proof.

Lemma 22. Let b = Ax⋆, where I∗ = supp(x⋆). Also, let x = argminsupp(x)=I ‖Ax − b‖2. Then,

√

‖(x − x⋆)I∩I∗‖2 + ‖xI\I∗‖2 = ‖(x − x⋆)I‖ ≤ δ|I∪I∗|
√

1 − δ2
|I∪I∗|

‖x⋆
I∗\I‖

17



Algorithm 3 Two-stage(l)

1: Input: matrix A, vector b, sparsity level k
2: Initialize x1

3: for t = 1 to T do
4: topt+1 ← indices of top l elements of |AT (Axt − b)|
5: Jt+1 ← It ∪ topt+1

6: zt+1
Jt+1

← AJt+1
\b, zt+1

J̄t+1
← 0

7: yt+1 ← Hk

(

zt+1
)

8: It+1 ← supp(yt+1)
9: xt+1

It+1
← AIt+1

\b, xt+1
Īt+1

← 0

10: end for

Proof. A similar inequality appears in [10] and we rewrite the proof here. Since xI is the solution tominu ‖AIu−b‖2,

AT
I (AIxI − b) = 0. (35)

In the exact case, b = Ax∗. Hence,

‖(x − x⋆)I‖2 = [(x − x⋆)I 0]
T

[

(x − x⋆)I

−x⋆
I∗\I

]

(36)

Now, using (35):

0 = [(x − x⋆)I 0]
T

AT
GAG

[

(x − x⋆)I

−x⋆
I∗\I

]

, (37)

where G = [I I∗\I]. Subtracting (37) from (36) we get,

‖(x − x⋆)I‖2 = [(x − x⋆)I 0]
T

(I − AT
GAG)

[

(x − x⋆)I

−x⋆
I∗\I

]

,

≤ δ2k‖(x − x⋆)I‖
√

‖(x − x⋆)I‖2 + ‖x⋆
I∗\I

‖2, (38)

where the second inequality follows using Lemma 13. Lemma follows by just rearranging terms now.

We now present our main theroem and its proof for two-stage thresholding algorithms.

Theorem 23. Suppose the vector x⋆ ∈ R
n is k-sparse and binary. Then Two-stage(l) recovers x⋆ from measurements

b = Ax⋆ in O(k) iterations provided:
δ2k+l ≤ .35

Proof. As zt+1 is the least squares solution over support set Jt+1, hence:

f(zt+1) − f(xt) ≤ f(st+1) − f(xt), (39)

where st+1
Jt+1

= (xt − ηAT (Axt − b))Jt+1
, η = 1

1+δl

and st+1
J̄t+1

= 0.

Now,

f(st+1) − f(xt) = (st+1 − xt)T AT (Axt − b) +
1

2
‖Ast+1 − Axt‖2. (40)

Now, as xt is the least squares solution over It. Hence, A
T
It

(Axt − b) = 0. Hence,

(st+1 − xt)It
= 0, (st+1 − xt)top

t+1
= −ηAT

top
t+1

(Axt − b), (st+1 − xt)J̄t+1
= 0. (41)

Using (40) and (41):

f(st+1) − f(xt) = −η‖AT
top

t+1
(Axt − b)‖2 +

η2

2
‖Atop

t+1
AT

top
t+1

(Axt − b)‖2,

≤ −η‖AT
top

t+1
(Axt − b)‖2 +

η2(1 + δl)

2
‖AT

top
t+1

(Axt − b)‖2,

= −η

2
‖AT

top
t+1

(Axt − b)‖2. (42)
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Now, let MDt be the set of missed detections, i.e., MDt = I∗\It. Then, by definition of topt+1:

‖AT
top

t+1
(Axt − b)‖2 ≥ min

(

1,
l

|MDt|

)

‖AT
MDt

(Axt − b)‖2. (43)

Furthermore,

‖AT
MDt

(Axt − b)‖ = ‖AT
MDt

AMDt
x∗

MDt
− AT

MDt
AIt

(xt − x∗)It
‖,

≥ ‖AT
MDt

AMDt
x∗

MDt
‖ − ‖AT

MDt
AIt

(xt − x∗)It
‖,

≥ (1 − δk)‖x∗
MDt

‖ − δ2
2k

√

1 − δ2
2k

‖x∗
MDt

‖, (44)

where last inequality follows using Lemma 14 and Lemma 22.

Hence, using (42), (43), and (44):

f(zt+1) − f(xt) ≤ f(st+1) − f(xt) ≤ − 1

2(1 + δl)
min

(

1,
l

|MDt|

)

(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

‖x∗
MDt

‖2. (45)

Next, we upper bound increase in the objective function by removing l elements from zt+1.

f(yt+1) − f(zt+1) = (yt+1 − zt+1)T AT (Azt+1 − b) +
1

2
‖Ayt+1 − Azt+1‖2,

=
1

2
‖Ayt+1 − Azt+1‖2,

≤ 1 + δl

2
‖zt+1

Jt+1\It+1
‖2, (46)

where the second equation follows as zt+1 is a least squares solution, and both yt+1, zt+1’s support is a subset of

Jt+1. The third equation follows from RIP and the fact that zt+1
It+1

= yt+1
It+1

.

Now, using Lemma 22:

‖zt+1
Jt+1\I∗

‖2 ≤ δ2
2k+l

1 − δ2
2k+l

‖x∗
I∗\Jt+1

‖2. (47)

Furthermore, |Jt+1\It+1| = l ≤ |Jt+1\I∗|. Hence, by definition of It+1,

‖zt+1
Jt+1\It+1

‖2 ≤ l

|Jt+1\I∗|
‖zt+1

Jt+1\I∗
‖2.

Using above equation and (47), we get:

‖zt+1
Jt+1\It+1

‖2 ≤ l

|Jt+1\I∗|
δ2
2k+l

1 − δ2
2k+l

‖x∗
I∗\Jt+1

‖2, (48)

Also, |Jt+1\I∗| = l + |I∗\Jt+1| ≤ l + |MDt|. Using (46), (48), and the fact that f(xt+1) ≤ f(yt+1) and each
x∗

I∗ = 1:

f(xt+1) − f(zt+1) ≤ l

l + |I∗\Jt+1|
1 + δl

2

δ2
2k+l

1 − δ2
2k+l

|I∗\Jt+1|. (49)

Adding (45) and (49), we get:

f(xt+1) − f(xt) ≤ − 1

2(1 + δl)



min (|MDt|, l)
(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

− l · |I∗\Jt+1|
l + |I∗\Jt+1|

(1 + δl)
2δ2

2k+l

1 − δ2
2k+l



 .

(50)
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Now,
l·|I∗\Jt+1|
l+|I∗\Jt+1| ≤ min(l, |I∗\Jt+1|) ≤ min(l, |MDt|).

Hence,

f(xt+1) − f(xt) ≤ −min(l, |MDt|)
2(1 + δl)





(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

− (1 + δl)
2δ2

2k+l

1 − δ2
2k+l



 . (51)

Now consider:




(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

− (1 + δl)
2δ2

2k+l

1 − δ2
2k+l



 ≥ 1

1 − δ2
2k+l

(

((1 − δ2k+l)
√

1 − δ2
2k+l − δ2

2k+l)
2 − (1 + δ2k+l)

2δ2
2k+l

)

,

> 0.01, (52)

where the second inequality follows by substituting δ2k+1 ≤ .35.

Hence, using (51) and (52), we have:

f(xt+1) ≤ f(xt) − min(l, |MDt|) · 0.0001. (53)

The above equation guarantees convergence to the optima in at least O(k) steps although faster convergence can be
shown for larger k.

Corollary 24. Cosamp converges to the optima provided

δ4k ≤ 0.35.
Corollary 25. Subspace-Pursuit converges to the optima provided

δ3k ≤ 0.35.

Note that CoSamp’s analysis given by [19] requires δ4k ≤ 0.1 while Subspace pursuit’s analysis given by [4] requires
δ3k ≤ 0.205. Note that our generic analysis provides significantly better guarantees for both the methods.
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