
A Derivation of the Minimax Forecaster

In this appendix, we outline how the Minimax Forecaster is derived, as well as its associated
guarantees. This outline closely follows the exposition in [10, Chapter 8], to which we refer
the reader for some of the technical derivations.

First, we note that the Minimax Forecaster as presented in [10] actually refers to a slightly
different setup than ours, where the outcome space is Y = {0, 1} and the prediction space is
P = [0, 1], rather than Y = {−1,+1} and P = [−1,+1]. We will first derive the forecaster
for the first setting, and then show how to convert it to the second setting.

Our goal is to find a predictor which minimizes the worst-case regret,

max
y∈{0,1}T

(
L(p,y)− inf

f∈F
L(f ,y)

)
where p = (p1, . . . , pT ) is the prediction sequence.

For convenience, in the following we sometimes use the notation yt to denote a vector
in {0, 1}t. The idea of the derivation is to work backwards, starting with computing the
optimal prediction at the last round T , then deriving the optimal prediction at round T − 1
and so on. In the last round T , the first T − 1 outcomes yT−1 have been revealed, and we
want to find the optimal prediction pT . Since our goal is to minimize worst-case regret with
respect to the absolute loss, we just need to compute pT which minimizes

max
{
L(pT−1,yT−1)+pT − inf

f∈F
L(f ,yT−10) , L(pT−1,yT−1)+(1−pT )− inf

f∈F
L(f ,yT−11)

}
.

In our setting, it is not hard to show that
∣∣inff∈F L(f ,yt−10)− inff∈F L(f ,yt−11)

∣∣ ≤ 1 (see
[10, Lemma 8.1]). Using this, we can compute the optimal pT to be

pT =
1

2

(
AT (yT−11)−AT (yT−10) + 1

)
(5)

where AT (yT ) = − inff∈F L(f ,yT ).

Having determined pT , we can continue to the previous prediction pT−1. This is equivalent
to minimizing

max
{
L(pT−2,yT−2)+pT−1+AT−1(yT−20) , L(pT−1,yT−1)+(1−pT−1)− inf

f∈F
L(f ,yT−11)

}
where

At−1(yt−1) = min
pt∈[0,1]

max

{
pt − inf

f∈F
L(f ,yt−10) , (1− pt)− inf

f∈F
L(f ,yt−11)

}
. (6)

Note that by plugging in the value of pT from Eq. (5), we also get the following equivalent
formulation for AT−1(yT−1):

AT−1(yT−1) =
1

2

(
AT (yT−10) +AT (yT−11) + 1

)
.

Again, it is possible to show that the optimal value of pT−1 is

pT−1 =
1

2

(
AT−1(yT−21)−AT (yT−20) + 1

)
.

Repeating this procedure, one can show that at any round t, the minimax optimal prediction
is

pt =
1

2

(
At(y

t−11)−At(yt−10) + 1
)

(7)

where At is defined recursively as AT (yT ) = − inff∈F L(f ,yT ) and

At−1(yt−1) =
1

2

(
At(y

t−10) +At(y
t−11) + 1

)
. (8)

for all t.
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At first glance, computing pt from Eq. (7) might seem tricky, since it requires computing
At(y

t) whose recursive expansion in Eq. (8) involves exponentially many terms. Luckily,
the recursive expansion has a simple structure, and it is not hard to show that

At(y
t) =

T − t
2
− 1

2T

∑
y∈{0,1}T

(
inf
f∈F

L(f ,ytY T−t)

)
=

T − t
2
− E

[
inf
f∈F

L(f ,ytY T−t)
]

(9)

where Y T−t is a sequence of T − t i.i.d. Bernoulli random variables, which take values in
{0, 1} with equal probability. Plugging this into the formula for the minimax prediction in
Eq. (7), we get that3

pt =
1

2

(
E
[

inf
f∈F

L(f ,yt−10Y T−t)− inf
f∈F

L(f ,yt−11Y T−t)

]
+ 1

)
. (10)

This prediction rule constitutes the Minimax Forecaster as presented in [10].

After deriving the algorithm, we turn to analyze its regret performance. To do so, we just
need to note that A0 equals the worst-case regret —see the recursive definition at Eq. (6).
Using the alternative explicit definition in Eq. (9), we get that the worst-case regret equals

T

2
− E

[
inf
f∈F

T∑
t=1

|ft − Yt|

]
= E

[
sup
f∈F

T∑
t=1

(
1

2
− |ft − Yt|

)]
= E

[
sup
f∈F

T∑
t=1

(
ft −

1

2

)
σt

]
where σt are i.i.d. Rademacher random variables (taking values of −1 and +1 with equal
probability). Recalling the definition of Rademacher complexity, Eq. (2), we get that the
regret is bounded by the Rademacher complexity of the shifted class, which is obtained from
F by taking every f ∈ F and replacing every coordinate ft by ft − 1/2.

Finally, it remains to show how to convert the forecaster and analysis above to the setting
discussed in this paper, where the outcomes are in {−1,+1} rather than {0, 1} and the
predictions are in [−1,+1] rather than [0, 1]. To do so, consider a learning problem in
this new setting, with some class F . For any vector y, define ỹ to be the shifted vector

(y + 1)/2, where 1 = (1, . . . , 1) is the all-ones vector. Also, define F̃ to be the shifted class

F̃ = {(f + 1)/2 : f ∈ F}. It is easily seen that L(f ,y) = 2L(f̃ , ỹ) for any f ,y. As a result,
if we look at the prediction pt given by our forecaster in Eq. (3), then p̃t = (pt + 1)/2 is the

minimax optimal prediction given by Eq. (10) with respect to the class F̃ and the outcomes
ỹT . So our analysis above applies, and we get that

max
y∈{−1,+1}T

(
L(p,y)− inf

f∈F
L(f ,y)

)
= max

ỹ∈[0,1]T
2

(
L(p̃, ỹ)− inf

f̃∈F̃
L(f̃ , ỹ)

)
= 2E

[
sup
f̃∈F̃

T∑
t=1

(
f̃t −

1

2

)
σt

]

= E

[
sup
f∈F

T∑
t=1

σtft

]
which is exactly the Rademacher complexity of the class F .

B Proof of Thm. 3

Let Y (t) denote the set of Bernoulli random variables chosen at round t. Let Ezt denote
expectation with respect to zt, conditioned on z1, Y (1), . . . , zt−1, Y (t − 1) as well as Y (t).
Let EY (t) denote the expectation with respect to the random drawing of Y (t), conditioned
on z1, Y (1), . . . , zt−1, Y (t− 1).

We will need two simple observations. First, by convexity of the loss function, we have that
for any pt, ft, yt, `(pt, yt) − `(ft, yt) ≤ (pt − ft) ∂pt`(pt, yt). Second, by definition of rt and

3This fact appears in an implicit form in [9] —see also [10, Exercise 8.4].
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zt, we have that for any fixed pt, ft,

1

ρb
(pt − ft)∂pt`(pt, yt) =

1

b
(pt − ft)(1− 2rt)

=
1

b
rt(ft − pt) +

1

b
(1− rt)(pt − ft)

= rt(f̃t − p̃t) + (1− rt)(p̃t − f̃t)

= rt

(
(1− p̃t)−

(
1− f̃t

))
+ (1− rt)

(
(p̃t + 1)−

(
f̃t + 1

))
= Ezt

[
|p̃t − zt| −

∣∣∣f̃t − zt∣∣∣] .
The last transition uses the fact that p̃t, f̃t ∈ [−1,+1]. By these two observations, we have

T∑
t=1

`(pt, yt)− L(f ,y) ≤
T∑
t=1

(pt − ft) ∂pt`(pt, yt) = ρ b

T∑
t=1

Ezt
[
|p̃t − zt| −

∣∣∣f̃t − zt∣∣∣] . (11)

Now, note that |p̃t− zt| − |f̃t− zt| −Ezt
[
|p̃t− zt| − |f̃t− zt|

]
for t = 1, . . . , T is a martingale

difference sequence: for any values of z1, Y (1), . . . , zt−1, Y (t− 1), Y (t) (which fixes p̃t), the
conditional expectation of this expression over zt is zero. Using Azuma’s inequality, we can
upper bound Eq. (11) with probability at least 1− δ/2 by

ρ b

T∑
t=1

(
|p̃t − zt| − |f̃t − zt|

)
+ ρ b

√
8T ln(2/δ). (12)

The next step is to relate Eq. (12) to ρ b
∑T
t=1

(∣∣EY (t)[p̃t]− zt
∣∣ − |f̃t − zt|

)
. It might be

tempting to appeal to Azuma’s inequality again. Unfortunately, there is no martingale
difference sequence here, since zt is itself a random variable whose distribution is influenced
by Y (t). Thus, we need to turn to coarser methods. Eq. (12) can be upper bounded by

ρ b

T∑
t=1

(∣∣EY (t)[p̃t]− zt
∣∣− |f̃t − zt|)+ ρ b

T∑
t=1

∣∣p̃t − EY (t)[p̃t]
∣∣+ ρ b

√
8T ln(2/δ). (13)

Recall that p̃t is an average over ηT i.i.d. random variables, with expectation EY (t)[p̃t].
By Hoeffding’s inequality, this implies that for any t = 1, . . . , T , with probability at least

1 − δ/2T over the choice of Y (t),
∣∣p̃t − EY (t)[p̃t]

∣∣ ≤ √2ln(2T/δ)
/

(ηT ). By a union bound,

it follows that with probability at least 1− δ/2 over the choice of Y (1), . . . , Y (T ),

T∑
t=1

∣∣p̃t − EY (t)[p̃t]
∣∣ ≤√2T ln(2T/δ)

η
.

Combining this with Eq. (13), we get that with probability at least 1− δ,

ρ b

T∑
t=1

(∣∣EY (t)[p̃t]− zt
∣∣− |f̃t − zt|)+ ρ b

√
2T ln(2T/δ)

η
+ ρ b

√
8T ln(2/δ) . (14)

Finally, by definition of p̃t = pt/b, we have

EY (t)[p̃t] = EY (t)

[
inf
f∈F

L
(
f̃ , z1 . . . zt−1 (−1)Yt+1 . . . YT

)
− inf

f∈F
L
(
f̃ , z1 . . . zt−1 1Yt+1 . . . YT

)]
.

This is exactly the Minimax Forecaster’s prediction at round t, with respect to the sequence

of outcomes z1, . . . , zt−1 ∈ {−1,+1}, and the class F̃ :=
{
f̃ : f ∈ F

}
⊆ [−1, 1]T . Therefore,

using Thm. 1, we can upper bound Eq. (14) by

ρ bRT (F̃) + ρ b

√
2T ln(2T/δ)

η
+ ρ b

√
8T ln(2/δ) .

By definition of F̃ and Rademacher complexity, it is straightforward to verify that RT (F̃) =
1
bRT (F). Using that to rewrite the bound, and slightly simplifying for readability, the result
stated in the theorem follows.

12



C Proof of Lemma 1

The proof assumes that the infimum and supremum of certain functions over Y,F are
attainable. If not, the proof can be easily adapted by finding attainable values which are
ε-close to the infimum or supremum, and then taking ε→ 0.

For the purpose of contradiction, suppose there exists a strategy for the adversary and a
round r ≤ T such that at the end of round r, the forecaster suffers a regret G′ > G with
probability larger than δ. Consider the following modified strategy for the adversary: the
adversary plays according to the aforementioned strategy until round r. It then computes

f∗ = argmin
f∈F

r∑
t=1

`(ft, yt) .

At all subsequent rounds t = r + 1, r + 2, . . . , T , the adversary chooses

y∗t = argmax
y∈Y

inf
p∈P

(
`(p, y)− `(f∗t , y)

)
.

By the assumption on the loss function,

`(pt, y
∗
t )− `(f∗t , y∗t ) ≥ inf

p∈P

(
`(p, y∗t )− `(f∗t , y∗t )

)
= sup
y∈Y

inf
p∈P

(
`(p, y)− `(f∗t , y)

)
≥ 0 .

Thus, the regret over all T rounds, with respect to f∗, is

r∑
t=1

(
`(pt, yt)− `(f∗t , yt)

)
+

T∑
t=r+1

(
`(pt, y

∗
t )− `(f∗t , y∗t )

)
≥

r∑
t=1

`(pt, yt)− inf
f∈F

r∑
t=1

`(ft, yt) + 0

which is at least G′ with probability larger than δ. On the other hand, we know that
the learner’s regret is at most most G with probability at least 1 − δ. Thus we have a
contradiction and the proof is concluded.
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