
Supplementary Material

8 Proof of Lemma 1

The proof follows along the same lines of the either of the two more general Lemmas proved below:
Lemma 2 which considers the multiplicative approximation case, and Lemma 8 which considers the
regularized case.

9 Proof of Lemma 2

L(wt+1)− L(wt) = − 1

κ1
|[∇L(wt)]jt

|2

≤ − c

κ1
‖∇L(wt)‖2

∞

≤ − c

κ1‖w0 − w⋆‖21
(L(wt)− L(w⋆))2 , (9)

where we used

L(wt)− L(w⋆) ≤
〈

∇L(wt), wt − w⋆
〉

≤ ‖∇L(wt)‖∞ · ‖wt − w⋆‖1.
The recursion (9) then gives us the result.

10 Proof of Lemma 8

Lemma 10. The greedy coordinate descent iterates of Algorithm 2 satisfy:

L(wt) +R(wt)− L(w∗)−R(w∗) ≤ κ1

2

‖w0 − w∗‖21
t

.

Proof. As shorthand, we use w′, w, j for wt+1, wt, jt. Note that |ηj | = ‖η‖∞ by definition of jt.
Now, ηj satisfies gj + κ1ηj + ρj = 0, for some ρ ∈ ∂R(w′). So,

R(w′)−R(w) = Rj(w
′

j)−Rj(wj)

≤ 〈ρj , ηj〉 = −〈gj , ηj〉 − κ1η
2
j .

Using this, we have

L(w′) + R(w′) ≤ L(w) + gjηj +
κ1

2
η2

j + R(w′)

≤ L(w) + R(w)− κ1

2
η2

j

= L(w) + R(w)− κ1

2
‖η‖2

∞
. (10)

Now let g′ = ∇L(w′) to get,

L(w′)− L(w) ≤ 〈g′, w′ − w〉
= 〈g′ − g, w′ − w〉 + 〈g, w′ − w〉
≤ η2

j κ1 + 〈g, w′ − w〉 ,

where the last inequality is because ‖g′ − g‖ ≤ κ1‖w′ − w‖ and ‖w′ − w‖ = |ηj |. Combining this
with the fact that L(w) − L(w⋆) ≤ 〈g, w − w⋆〉 gives,

L(w′)− L(w⋆) ≤ η2
j κ1 + 〈g, w′ − w⋆〉 .
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Addding to this the inequality,R(w′)−R(w) ≤ 〈ρ, w′ − w⋆〉 gives
ǫ′ := L(w′) + R(w′)− L(w⋆)−R(w⋆)

≤ η2
j κ1 + 〈ρ + g, w′ − w⋆〉

≤ η2
j κ1 + ‖ρ + g‖∞D

= ‖η‖2
∞

κ1 + κ1‖η‖∞D ,

where D := ‖w0 − w⋆‖1. Assuming that ηj ≤ D (note that D = O(
√

s) is at least lower-bounded
by a constant, and the objective can reduce by such a large magnitude ηj > D atmost finite number
of times), we get the key inequality

ǫ′ ≤ 2κ1‖η‖∞D .

Plugging this back in (10), we get the recurrence

ǫt+1 ≤ ǫt −
(ǫt+1)

2

8κ1D2
.

This yields ǫt ≤ O(κ1D
2/t) as required.

11 Proof of Lemma 3

Proof. Denote r̄ = r/‖r‖2. Suppose x̄k is a (1 + ǫnn) multiplicative factor approximation to the
greedy step maxj 〈x̄, r̄〉. Then

‖x̄k − r̄‖22 ≤ (1 + ǫnn)‖x̄j − r̄‖22,

so that 〈x̄j , r̄〉 ≤ ǫnn
(1+ǫnn)

+ 1
(1+ǫnn)

〈x̄k, r̄〉 .

Thus if 〈x̄k, r̄〉 > ǫ, then

〈x̄j , r̄〉 ≤
ǫnn

(1 + ǫnn)

〈x̄k, r̄〉

ǫ
+

1

(1 + ǫnn)
〈x̄k, r̄〉

=
ǫnn(1/ǫ) + 1

(1 + ǫnn)
〈x̄k, r̄〉 ,

which completes the proof.
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