Efficient Methods for Overlapping Group Lasso: Supplemental
Material

A. Properties of the Functionw(-) in (I5)

Theorem 3. The functionu(Y") is convex and continuously differentiable with
W' (Y) = —max(u — Ye,0)e’. (24)
In addition,w’(Y’) is Lipschitz continuous with constagt, i.e.,

o' (1) =o' (Y2)llr < ¢°[IY1 — Yallp, V¥ Y1,Ya € RPXY. (25)

To prove Theorer]3, we first present two technical lemmas fif$tdemma is related to the optimal
value function[[4.19], and it was used in a recent stlidy [27infinite kernel learning.

Lemma 4. [4] Let X be a metric space antl be a normed space. Suppose that forale X,
the functiony(x, -) is differentiable and that)(x,Y’) and Dy (x,Y") (the partial derivative of
¥(x,Y") with respect td") are continuous orX x U. Let® be a compact subset &f. Define the
optimal value function ag(Y") = infxcqe (%, Y). The optimal value functiop(Y") is directionally
differentiable. In addition, i#Y € U, «(-,Y) has a unique minimizex(Y") over®, thenp(Y) is
differentiable afy” and the gradient op(Y') is given by’ (Y) = Dy ¢ (x(Y),Y).

The second lemma shows that the opergter max(x, 0) is non-expansive.
Lemma 5. Vx,y € R?, we havd| max(x, 0) — max(y, 0)|| < |[|x — y].

Proof. The results follows sincemax(z,0) — max(y,0)| < |z — y|, Va,y € R. O

Proof of Theorem[3: To prove the differentiability ofu(Y), we apply Lemmé&l4 with{ = R,
U=RP9and® = {x € X : u+ \2)_ we > x > 0}. Itis easy to verify that 1))(x,-) is
differentiable; 2)y(x,Y) and Dy (x,Y) = xeT are continuous oiX x U; 3) ® be a compact
subset ofX'; and 4)vY € U, ¢(x,Y’) has a unique minimizet(Y) = max(u—Ye, 0) overd. Note
that, the last result follows from > 0 andu — Ye < u + Ay Y w;e, where the latter inequality
utilizes || Y| < Xow;; and this indicates that(Y) = max(u — Ye,0) = argminy, ¢(x,Y) =
arg mingeqe ¥(x,Y). It follows from Lemmd# that

@(Y) = Helf{:- ¢(X7 Y) = ¢(maX(u - Ye7 0)7 Y)

is differentiable withy' (V) = max(u — Ye, 0)e™.

In (I3), ¥(x,Y) is convex inx and concave ift’, and the constraint sets are closed convex for
bothx andY’, thus the existence of the saddle point is guaranteed byehenown von Neumann
Lemma[21]. As aresult,

p(Y) = irelg ¥(x,Y) = ¢(max(u—Ye,0),Y)

is concave, and (YY) = —¢(Y) is convex. For any7, Y>, we have

o' (Y1) — ' (Y2) [P
=|| max(u — Yje,0)e” — max(u — Yse, 0)e’||»
<|le|| x || max(u — Yie,0) — max(u — Yze, 0| (26)
<llell x [[(}Y1 — Ya)e]
<g’|Y1 — Yallr,

where the second inequality follows from Lempida 5. We pr&).(2 O



B. Dykstra-like Proximal Splitting Method for Computing the P roximal
Operator in (B)

In the field of signal processing, one classical problemeastinvex feasibility problem

findz € (1) Ci, (27)
=1
whereC;’s are convex sets. Efficient methods have been designe@Mrwhere at each itera-
tion, only one convex set is considered and the solution datga iteratively by cycling through
all convex sets. Under certain conditions, convergenceigsanteed. For our problem, singé (5)
can be considered as the projection of a veat@nto a collection of convex sets induced by the
regularization components;||x¢, ||, the proximal splitting ideas can be applied.

We definef; = \||xg, ||, the proximal operator ifi{5) can be rewritten as:
1 g
. 2
nin §||X—U|| +;wifi (28)

Then, the Dykstra-like proximal algorithm can be summatireAlgorithm[2.

Algorithm 2 Dykstra-like Proximal Splitting Method

1 SetX():ll, q170,...,qg,ozxo,n20
2: repeat

3. fori=1,...,¢9do

4. Pin = prOXfZ_ Qi,n

5:  end for

6: Xp+1 = Zle W;iPin

7. fori=1,...,gdo

8: din+1 = Xn+1 + Qin — Pin

9: end for
100 n=n+1
11: until Convergence

The last piece of puzzle in Algorithi 2 is to solpe= prox;. q, defined as:

1 2
= in —||x — A .
p = arg min o |x — qf|" + Allxg,
Clearly, we haveps. = qg,. For index sety;, a close form solution is known to exist:

_ maX(HqGi — >‘50)
' lac, |l
Thus, at each iteration, we have a closed-form solution.

i

C. Alternating Direction Method of Multipliers for Computing the Proximal
Operator in ()

Besides splitting the proximal operators, we can also bygas difficulty brought by overlapping
groups by introducing auxiliary variables, and reformelE) as:

1 ) J
min —||lx—ul|*+ A w; ||z,
pin gl = ul? 4wl 9)
st z,=x¢g,, t1=1,...,9

We can therefore form the augmented Lagrangian as follows:

2

1 g 9 9
Ly(x,2,y) = 5lx —ul* + A willzall + Yy (20— x6.) + (0/2) Y |1z — xa,
i=1 i=1 i=1



The Alternating Direction Method of Multipliers (ADMM) caists of the following iterations:

xF1 = argmin L, (x, 2", y*)
X
zZFt1 = argminL (xk"’l,z,yk) (30)
k+1 k+1 _ kel
y1+ _y7,+p( * G-:_)

One nice property of ADMM is, each iterative step admits aetbform solution. We define as
the point-wise productp as the point-wise divisiorg the p-dimensional vector with all ones, and
the indicator vectog&; such thag;(j) = 1if j € G; and 0 otherwise. We further defige, z; € RP
such thay;(G;) = y;, ¥:(G%) = 0 andz;(G;) = z;,z;(GS) = 0. For updatingk, we have:

g g
;{LP(X,Zk,yk):x—u—ny—‘,—p(z z>®x p<225>

and therefore,

For updatingz;, we use the sub-differential method* is the optimal solution if and only if O
belongs to the sub-differential S@Lp(x’”l, z*,y"*). Decouple the problem with respect to groups,
we have:

1

Aw;
= Z§+1 _ X’Z,‘-:._l + 7y£€ + ZaHZi_c-i-lH

where

llz

k+1 k
||zt = ZWH Iz # 0
' {tlt e RIG: |t <1} |28+ = 0.

Thus, we have:
max{||xk+1H =X, 0} oy

k+1 _
7 ‘ G
where
hHl k+171 kX = Aw;
G Gi 7 1 p .

Optimality conditions and stopping criterion The KKT conditions for[(2D) are primal feasibility:

z; —xg, =0 (32)
and the dual feasibility:
g
O=x"-u->Y ¥/
i (32)

0 € \w; 0|z || +y;
Sincez**! minimizesL,(x**!,z,y"*), we have
1 Aw;
0z —xg' + ~y!f + —=0lz""|

- i

1 Aw; X
— ¥y Mg gl

Therefore, the second condition in the dual feasibilityngags satisfied, and the optimization comes
down to attaining the primal and the first dual feasibility.



Definer; = z; —x¢,. We havey? ™ = y¥ + pr¥+1. Sincex**+! minimizesL,(x, z", y*), we have
g g g
0=x""—u=Y"gr+p(d &) axt—p(> 2
=1 =1 =1
g g
SERRTE YRR DSCEEEY)
i=1

i=1
or equivalently,
g g
S ) R Wi
(i:l i=1
This means that the quantity
g
st =p (Z(if“ - ii—“))
=1

can be viewed as the residual for the first dual feasibiligird?l with the primal residual***, we
can terminate the algorithm by checking whether they ardlemaugh.

D. Alternating Direction Method of Multipliers for Solving Ov erlapping
Group Lasso

Using the least squared loss and observing thaiorm is a special case ¢fl(2), we can rewrite the
overlapping group lasso probled (1) as:

1 5
i gl4x— ol + 2 3wl
s.t. z; =xg,

We can therefore form the augmented Lagrangian as follows:

2

1 g g g
Ly(Ax,7,y) = 3 Ax = ul? + XY willzil + 3 yT (5 —xa,) + (/2) D Il — xc,
i=1 1=1 1=1

The Alternating Direction Method of Multipliers (ADMM) caists of the iterations:

xF1 = arg min L, (x, 2", y*)
X
2" = argmin L,(x"", z,y%)
z
k+1 .k k+1 k1
yi o =yitelzT —xE)

We definee the p-dimensional vector with all ones, and the indicator veétosuch thag;(j) = 1
if j € G; and 0 otherwise. We further defige, z; € R? such thaty;(G;) = y;,y:(GS) = 0 and
7:(Gy) = 2;,2;(GS) = 0. For updatingz, we have:

6 g ~ g ~ g ~
8—XL,,(X, 2" y*) = AT Ax — ATu - ;yf +p (; ei> XX —p <§ 7z
and therefore, the update fof*! involves solving the following linear system:
Ax =,

where

i=1
~ g
b=ATu+> yktpd 2
=1 1=1



Please note that, for a given probler;is fixed. Therefore, for moderate size problems, we can
save the Cholesky decomposition.4fsuch that the linear system can be solved very fast in each
iteration. For large (high dimensional) problems, theagerofA might not be practical. However,
since we can calculatéx without having to calculatel, methods such as Preconditioned Conjugate
Gradient (PCG) or BB method can be applied.

For updatingz;, we use the sub-differential method* is the optimal solution if and only if O
belongs to the sub-differential sef.,(x*+1, z*, y*). Decouple the problem with respect to groups,

we have:

0€z™ —xit + —yf + =0z
p p
where -
i k
ol — {ll 2+ 0
i i
{tle e RIS g <1} [2F*!) = 0.
Thus, we have: ~
k1l _ maX{”ilgle — X0}
) - ~k G
' I%&H
where ) \
- < w;
Xgﬂ _ ngl ——yk A= pz_

E. Additional Experiments

To illustrate the scalability of our proposed method, we &galuate our method using numberk (
of genes larger than 2000. The results are summarized ie[Babl

Table 2: Scalability study of the proposed FoGLasso algoriinder different numberg)of genes
involved. The reported results are the total computatitimad (seconds) including all nine regular-
ization parameter values.

D 3000 4000 5000 6000 7000 8141

pathways| 37.6 48.3 625 687 86.2 99.7

edges 58.8 84.8 102.7 140.8 173.3 2478




