A Supplementary material: Proofs

Before proving Theorens 1 ahd 2, we provide some prelimimasylts presented sectiofsTA.1
andA2

A.1 Tail inequalitiesfor vector-valued martingales

We need the following result about vector-valued martingaéxtracted from [12].

Lemmal. Let(Fy;k > 0) be afiltration,(my; k > 0) be anR¢-valued stochastic process adapted
to (Fi), (nk; k > 1) be a real-valued martingale difference process adapteddg. Assume that
Nk 1S conditionally sub-Gaussian in the sense that there £gistneR > 0 such that for anyy > 0,
k>1,

2 P2
Elexp(ynk) | Fr-1] < exp <7 2R ) a.s. )

Consider the martingal¢; = 2221 mg_1m, and the procesd/; = 2221 my_1mj_,. Assume
that with probability one the smallest eigenvalue\df is lower bounded by some positive constant
Ao and that||mg||2 < ¢, holds a.s. for any > 0.

The following hold true: Let

k= /3+2log(1 +2c2,/\o). (10)
Foranyz € R?,0 < § < 1/e,t > max(d, 2), with probability at leastl — 4,
2’61 < wR\/21ogt /log(1/0) ||, (11)
Further, for any0 < ¢ < min(1,d/e), t > max(d, 2), with probability at least. — 4,
I€el -1 < 5Rv/2dlogt \/log(d]6). (12)

The proof of [Ill) is based on an exponential inequalitylof] [A6d is adopted from that of
Lemma B.4 of[1/7]. Giver[{d1), inequalitf{lL2) follows by seralgebra from[{11).

Proof. In order to provel(d1), we shall use Corollary 2.2of| [16] whitates the following: Pick
some random variable$ and B > 0 such that

2
E [exp {'yA - %BQH <1 forallyeR. (13)

Then, for allc > /2, and ally > 0,

P<|A|2c\/(32+y) (1+%10g(%2+1))> Sexp{—%}. (14)

We apply this inequality to the random variablés= z'¢; /R and B = ||z||,,,, wherez € R% is
some fixed vector. We first check if the so-definedB satisfy [IB). Pick anyy e R. We first study
vA — (yB)?/2. We have

/ 2 ' M. t
VA (yB2p = 1E8 T N,

R 2

where ,

Dy = % ’mg_1m, — 77:17/ Mg—1My_1 T =
Now, observe that thanks tBl (9, [exp(Dx) | Fr-1] <
Fr-adapted,

E [exp(wA — 732/2)]

2
L' mp—1mk — L (2'me—1)?.
1. Let P, = exp(Dy). Noting thatP; is

E [Pl . Pt—lpt]
EE[P - PP | Fia)]]=E[P1--- P_1 E[ P | Fi_i]]
EE[P - Py |Fi2]| =E [Py - PoE [Py | Ft—2]]

IA

<E[E[P|F] <1
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which finishes the verification of{IL3). Now, chooge= )\OH:chg to get from [I#) that for all
0<d<1/e,t>1,with probabilityl — 4,

1 113 1
RS i ) {1+ slog 1 M 2log ( < ) . 15
|x5t|_RJ (||:c||Mt+Ao|x|2)< +glos( 143 og(5). @9

Noting that fort > max(d, 2), ollz|? < [lal|%, < t]z|3c2,, we havelz|3,, + ollz|% < 2],

=13,
Nolzl3

and1 + 3 log (1 + ) <1+ 3log (1 + %) < w%log(t)/2, thanks to the definition of

k. Indeed, it is easy to verify that the slope of functibr £ log(1 + ¢2,t/Xo) is below that of

k2 log(t)/2 for anyt > 1 provided that: > 1. Hence, the last inequality holds if it holds true for
t = 2, which, after reordering the terms gives the constraint

. 2 +log(1l+ 2072,1//\0).
- log 2

Upper boundin@/ log 2 by 3 and1/log 2 by 2, we get the definition ok, which indeed satisfies
k> 1.

Hence, wher{dI5) holds, it also holds that

/ 1
o6 < el Tou(0 2108 (5 ) (16)
which is exactly[[TIL).

Now, let us turn to proving{d2). Denote I8 the symmetric, positive definite matrix such that
S2 = M, and, foralll <i < d, lete; be theit" unit vector (i.e., for allj # 1, e;; = 0ande; = 1).

Noting that the identity matrix can be written As= Zle e;e}, we have||§t|\?wgl = &M =
€SS e = L €157 Yesel S ke, Therefore, for any constant> 0,

d d
P [||gt|ﬁw;1 > dﬂ —Pp [Z €8 eel S e, > d#] <Y P[5, ee}S; e = 7]
i=1 i=1

d
<> P[lgS el > 7]
=1

Applying @) with z = S;'e;, andr = nR"Sflei"A4tw/log(t)1/210g(%), 0 <4 <

min(1,d/e), t > max(d,2), and using the fact thjalt&’;leiHMt = 1, we have

P [Ilétlfwtl > 2dK*R? log(t) log (g)] <4,

thus, finishing the proof. O

Remark 1. Note that ifn, € [ax — R, + R] holds almost surely for somg,_;-measurable
random variablex;, then, using Hoeffding’'s lemma (see, e.g., Lemma All of\&j)get that for all
v € R,

4R2 2 2R2
E [exp {7y} | Fr-1] < exp {7E [ Ifkl]}exp{ 87 } = em@{7 5 } ;

showing that(r;) satisfies the sub-Gaussian conditiq@ In particular, this holds iflx| < R
holds almost surely.
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A.2 A bound on the prediction error

In this section we prove some bounds on the error of predj¢tia mean-rewards.

We start with the following result:

Proposition 1. Take anys, ¢ such that) < § < min(1,d/e), 1 + max(d,2) <t < T. Let A, be
anyA-valued random variable. Let

2k LﬁRmax
B7(0) = === mal - V2 dlogt /log(d/6), (17)
i
wherer is defined byfI0). Then, with probability at least — 4, it holds that

[atom'3, 0.) = ulom'3 B0)| < B (5).

Proof. Pick a timet such thatd + 1 < ¢ < T and an actioru € A. We start with bounding
pw(m'6.) — u(m;ét)‘. Sincey is Lipschitz, we haveéu(m’,0.) — u(m’,0;)| < k,|m’, (0. — 6;)].
By AssumptiordLV ¢; is continuou§, hence, by the Fundamental Theorem of Calculus,

ge(0+) — gt(ét) = Gy(f, — ét) )
where

1
Gy = / Vg (s0. + (1 —s)0;)ds.
0

Now, for anyf € ©, Vg,(0) = 22;11 ma,m'y, 1(m/y, 0). Therefore, thanks to Assumptibh 1, we
haveG; > ¢, M, > ¢, Mgy > 0, where in the [ast step we used that the fit'sictions are such that
Mg = M\l = 0. Thus,G, is positive definite and, hence, it is also non-singular.réfore,

(m0.) = (! 80)| < b [l G (91(62) = 90(6)]

SinceG; ! is also positive definite, we get

90(0.) — 9:00)|| _, - (18)

[l .) = (il B0)| < Rllmall -

SinceG; = ¢, M, implies thatG; " < ¢, 'M; ", |Jzf g1 <
x € R%. Hence,

¢1C7||:c|\M;1 holds for arbitrary

ky,
< a”maHM;l

g1(0.) — g:(6y)

() = a(rml ) o

Now,

Hgt(e*) — gt(at)HM;l < Hgt(e*) — 9¢(0¢) ‘Mfl + Hgt(ét) — 9:(6:)

< 2Hgt(9*) - gt(ét)HMtfl ’

where the first inequality follows from the triangle ineqtaland second follows since by
assumptiord,. € © and because of the optimizing propertydpiwithin ©.

HM;1

Thanks to the definition of;, and usinger, = Rp — pu(m/y, 0.), & def gt(ét) — gi(0,) =

S moa, ex. Therefore,

~ 2
() = am0)| < =2 a2 16l 2 -
i

Since this holds simultaneously for all€ A, it also holds wher is replaced byany A-valued
random variabled;:

Y
]u(m'gto*) — g B0 < 2 g el g (19)
m t

®For allz € R?, Vg, (x) denotes the Jacobian matrixg@fat pointz.
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Now, let us use Lemm&@l 1 to bOUnH:EtHMt—l. Setm, = ma,., (k = 0,1,..),
e = e (K = 1,2,...), Fr = o(ms,ns;s < k). Due to Assumptiold3E [n|Fr—1] =
E[mklme—1,me-1, ... ,m1,m,mo] = E[ex|lma,, ex—1,...,ma,, €1,ma,] = 0. Since by the
same assumptiotier| < Rpax, We may choos&®® = Ry, by RemarlL. Further, by Assump-
tion[, [[mil2 = ||ma,,.ll2 < maxqea|mall2 < cn, and, by the choice of the first actions,
S maml_ = Y0, ma,m'y, = Xol. Therefore, all the assumptions of the Lemma are
met and we can conclude that for aly< ¢ < min(1,d/e), ¢ > 1 4+ max(d, 2), with probability
at leastl — ¢,

€0l a7+ < KRmax /2 dlogt \/log(d/d), (20)
wherex is defined by[(ZI0).
By chaining [I®) and{30), we get that on the event wiieh (2@)shave also have

~ 2k, kRmax
(o5 0.) — 'y )| < T

myg, HM{l V/2dlogt+\/log(d/s),
finishing the proof. O

PropositiorIL implies the following bound on the immediateam regret:

Proposition 2. For all 6 such that0 < ¢ < min(1,27d/e), simultaneously for all
t € {1 4+ max(d,2),...,T},

plmy, 0.) — p(mly,0.) < 2 6 (57) -

holds with probability at least — 6.

Proof. Fixt € {1+max(d,2),...,T} andlet be as in the statement. Consider the decomposition
i, 0.) = u(mly, 0.) = (w(mi, 0.) = u(ma. 01))
o (1ma.00) = p(ma,02)) + (1ma, ) = pu(mly, 0.) )
Now, according to Propositidd 1, outside of an event of membounded by /(27T),
p(mg, 0.) — p(my, 6,) < B (6/(2T)).
Also, outside of an event of measure bounded b27),
plmly, 0.) — p(mla,0:) < B (5/(2T)).
Further, by the definition oft,,
plma, 6c) = p(ma,0;) = p(ma,0e) + 87" (8/(2T)) — p(ma,8e) — 57 (8/(2T))
< p(ma,0e) + 5 (6/(27)) = p(ma,00) — 57 (5/(2T))
= B{*(8/(2T)) — B¢ (6/(2T)).
Chaining the inequalities and using a union bound gives tta fesult. O
According to the previous proposition, the behavior of themiediate regret at time step

t is bounded by24:(5/2T) = 2p()lma,llpr- < 20(T)|ma, |y Therefore, with

to = 1+ max(d, 2), outside of an event of probability at mdstwe can bound the cumulated regret
up to timeT" by

T
Regre} < (to — 1) Ruax + Z min {p(m, 0.) — p(m'y,0.), Ruax } (21)
t=to
T
< (to = 1) Rumax +2p(T) > min {[Ima, 1,1} (22)

t=to
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where the last inequality follows from the fact th&,.. < 2p(T) by definition of p(T).
Note that ||mAt||M;1 is expected to become small asgets large. This motivates us to

bound a sum OmeAtH?w—l. For technical reasons that will become clear later, we Houn
t

T . 2
Zt:dmln {HmAtHz\,f;la 1}-
Proposition 3. Lettg > d + 1. Then,
*)
a.s. .

7 min{Hm [ 1}<2d1o (
t=to Ay Mt ? — g Ao

Proof. This proof follows the steps of the proof of Lemma 9laf [8]. Byetdefinition ofM; 4, we
have

det (My 1) = det (M, +ma,mly,) = det (M) det (1 MV, (Mt_1/2m,4t)’)

t
2 2
= det (M) (14 a3, ) = det (M3) TT (14 limali3y ) -
kZ:t()

where the last line follows from the fact that+ HmAtHfW] is an eigenvalue of the matrix
t

I+ M, V2 A, (Mt_l/zmAt)’ and that all the other eigenvalues are equadl tbhus, using the fact
thatz g 2log(1 -+ z) which holds for any) < z < 1, we have

T T
S min a3+ 1} <23 log (14 I+

t=to t=to

T
= 2log H (1 + HmAtH?w;l)

t=to
det(MT+1)
°g< det(My,)

Note that the trace af/, ; is upper-bounded bic2,. Then, since the trace of the positive definite
matrix M, is equal to the sum of its eigenvalues atetl( M/, 1) is the product of its eigenvalues,
we havedet(M; 1) < (tc2,)?. In addition,det(M;,) > A\ sincety > d + 1. Thus,

T 2
T
) min{HmAtHj‘rlJ} <2dlog <Cf;_) :
¢ 0
t=to

A.3 Proof of the Main Theorems
A.3.1 Proof of Theorem[l

Proof. We start from [(2IL), wheré, = 1 + max(d,2). According to the definition ofA(6,)
whenever4, is a suboptimal actiony(my, 6.) — p(m’y,0.) > A(6.), while in the other case we

haveu(m, 0.) — p(m’y,0.) = 0. In both cases, we can write

m! 0.) — u(m’,y 6,))2
N(mZ*G*)—M(mIAtG*)S(M( L )A(oib)( 4.9.)

According to Propositioh]2, with probability— ¢, simultaneously for alt € {t¢,...,T},

plmi, 0.) — p(mly, 0.) < 26{4(8/(2T)) = 2p(t) [ ma, || 1 -
Therefore, on the event when these inequalities holds, we ha

T
S i (), 0.) — (' 0.). o} < me{ L0 a2 R

t=to
2
{Imai}
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where the last inequality follows from the fact that6.) < Riax < 4p(T)?/Rmax and thatp(.)
is an increasing function. Combining this with the bound afg®sitiorB, we get

T
: p(T)? T
; min {M(m;*e*) - :u'(m;lte*)a Rmax} < 8d A(Q*) 10g )\0 .
Plugging in the definition 0p(7"), we get that it holds with probability — § that

T
Regret, < (tg — 1)Rmax + Z min { p(m}, 0.) — pu(m'y,0x), Rmax |

t=to

< (ty— DR 3207 K Rnakis | loa(247/6) g L
_(0_)max+w Og()og( /)Og )\0 .

A.3.2 Proof of Theorem[?
Proof. Letty = 1 + max(d, 2). According to PropositioRl2[{22) holds with probability- §, so

it remains to bound
T
Y min {HmAtHM;l, 1} .
t=to

Using the Cauchy-Schwarz inequality and Proposffion 3, axesh

T T
> min {[ma, 11} < \/TJ > min {ma, 31,1}

t=to t=to

< VT +/2dlog(c2,T/ o).

Combining with [ZP) and using the definition pf-) gives

Regref < (to — 1) Rmax + 2 p(T') /2d T log(c2, T/ o)
FutPmax /7750 F) Tog(c2 T/h) og(2Td])

Cu

< (d4+1)Rmax +8d Kt Fman log(sT') /T log(2Td/$),

Cu

= (to — 1) Runax + 84

wheres = max (%, 1), thus, finishing the proof. O
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