
Reverse Multi-Label Learning

James Petterson
NICTA, Australian National University

Canberra, ACT, Australia
james.petterson@nicta.com.au

Tiberio Caetano
NICTA, Australian National University

Canberra, ACT, Australia
tiberio.caetano@nicta.com.au

Abstract
Multi-label classification is the task of predicting potentially multiple labels for a
given instance. This is common in several applications such as image annotation,
document classification and gene function prediction. In this paper we present
a formulation for this problem based on reverse prediction: we predict sets of
instances given the labels. By viewing the problem from this perspective, the
most popular quality measures for assessing the performance of multi-label clas-
sification admit relaxations that can be efficiently optimised. We optimise these
relaxations with standard algorithms and compare our results with several state-
of-the-art methods, showing excellent performance.

1 Introduction
Recently, multi-label classification (MLC) has been drawing increasing attention from the machine
learning community (e.g., [1, 2, 3, 4]). Unlike in the case of multi-class learning, in MLC each
instance may belong to multiple classes simultaneously. This reflects the situation in many real-
world problems: in document classification, one document can cover multiple subjects; in biology, a
gene can be associated with a set of functional classes [5]; in image annotation, one image can have
several tags [6].

As diverse as the applications, however, are the evaluation measures used to assess the performance
of different methods. That is understandable, since different applications have different goals. In
e-discovery applications [7] it is mandatory that all relevant documents are retrieved, so recall is
the most relevant measure. In web search, on the other hand, precision is also important, so the
F1-score, which is the harmonic mean of precision and recall, might be more appropriate.

In this paper we present a method for MLC which is able to optimise appropriate surrogates for
a variety of performance measures. This means that the objective function being optimised by
the method is tailored to the performance measure on which we want to do well in our specific
application. This is in contrast particularly with probabilistic approaches, which typically aim for
maximisation of likelihood scores rather than the performance measure used to assess the quality of
the results. In addition, the method is based on well-understood facts from the domain of structured
output learning, which gives us theoretical guarantees regarding the accuracy of the results obtained.
Finally, source code is made available by us.

An interesting aspect of the method is that we are only able to optimise the desired performance
measures because we formulate the prediction problem in a reverse manner, in the spirit of [8]. We
pose the prediction problem as predicting sets of instances given the labels. When this insight is
fit into max-margin structured output methods, we obtain surrogate losses for the most widely used
performance measures for multi-label classification. We perform experiments against state-of-the-
art methods in five publicly available benchmark datasets for MLC, and the proposed approach is
the best performing overall.

1.1 Related Work
The literature in this topic is vast and we cannot possibly make justice here since a comprehensive
review is clearly impractical. Instead, we focus particularly on some state-of-the-art approaches

1

that have been tested on publicly available benchmark datasets for MLC, which facilitates a fair
comparison against our method. A straightforward way to deal with multiple labels is to solve a
binary classification problem for each one of them, treating them independently. This approach is
known as Binary Method (BM) [9]. Classifier Chains (CC) [4] extends that by building a chain of
binary classifiers, one for each possible label, but with each classifier augmented by all prior rele-
vance predictions. Since the order of the classifiers in the chain is arbitrary, the authors also propose
an ensemble method – Ensemble of Classifier Chains (ECC) – where several random chains are
combined with a voting scheme. Probabilistic Classifier Chains (PCC) [1] extends CC to the prob-
abilistic setting, with EPCC [1] being its corresponding ensemble method. Another way of working
with multiple labels is to consider each possible set of labels as a class, thus encoding the problem
as single-label classification. The problem with that is the exponentially large number of classes.
RAndom K-labELsets (RAKEL) [10] deals with that by proposing an ensemble of classifiers, each
one taking a small random subset of the labels and learning a single-label classifier for the prediction
of each element in the power set of this subset. Other proposed ensemble methods are Ensemble
of Binary Method (EBM) [4], which applies a simple voting scheme to a set of BM classifiers, and
Ensemble of Pruned Sets (EPS) [11], which combines a set of Pruned Sets (PS) classifiers. PS is
essentially a problem transformation method that maps sets of labels to single labels while pruning
away infrequently occurring sets.Canonical Correlation Analysis (CCA) [3] exploits label related-
ness by using a probabilistic interpretation of CCA as a dimensionality reduction technique and
applying it to learn useful predictive features for multi-label learning. Meta Stacking (MS) [12] also
exploits label relatedness by combining text features and features indicating relationships between
classes in a discriminative framework.

Two papers closely related to ours from the methodological point of view, which are however not tai-
lored particularly to the multi-label learning problem, are [13] and [14]. In [13] the author proposes
a smooth but non-concave relaxation of the F -measure for binary classification problems using a
logistic regression classifier, and optimisation is performed by taking the maximum across several
runs of BFGS starting from random initial values. In [14] the author proposes a method for optimis-
ing multivariate performance measures in a general setting in which the loss function is not assumed
to be additive in the instances nor in the labels. The method also consists of optimising a convex
relaxation of the derived losses. The key difference of our method is that we have a specialised
convex relaxation for the case in which the loss does not decompose over the instances, but does
decompose over the labels.

2 The Model
Let the input x ∈ X denote a label (e.g., a tag of an image), and the output y ∈ Y denote a set
of instances, (e.g., a set of training images). Let N = |X| be the number of labels and V be the
number of instances. An input label x is encoded as x ∈ {0, 1}N , s.t.

∑
i xi = 1. For example

if N = 5 the second label is denoted as x = [0 1 0 0 0]. An output instance y is encoded as
y ∈ {0, 1}V (Y := {0, 1}V), and yn

i = 1 iff instance xn was annotated with label i. For example
if V = 10 and only instances 1 and 3 are annotated with label 2, then the y corresponding to
x = [0 1 0 0 0] is y = [1 0 1 0 0 0 0 0 0 0]. We assume a given training set {(xn, yn)}N

n=1, where
{xn}N

n=1 comprises the entirety of labels available ({xn}N
n=1 = X), and {yn}N

n=1 represents the
sets of instances associated to those labels. The task consists of estimating a map f : X → Y which
reproduces well the outputs of the training set (i.e., f(xn) ≈ yn) but also generalises well to new
test instances.

2.1 Loss Functions

The reason for this reverse prediction is the following: most widely accepted performance measures
target information retrieval (IR) applications – that is, given a label we want to find a set of relevant
instances. As a consequence, the measures are averaged over the set of possible labels. This is the
case for, in particular, Macro-precision, Macro-recall, Macro-Fβ

1 and Hamming loss [10]:

Macro-precision =
1
N

N∑

n=1

p(yn, ȳn), Macro-recall =
1
N

N∑

n=1

r(yn, ȳn)

1Macro-F1 is the particular case of this when β equals to 1. Macro-precision and macro-recall are particular
cases of macro-Fβ for β → 0 and β →∞, respectively.

2

Macro-Fβ =
1
N

N∑

n=1

(1 + β2)
p(yn, ȳn)r(yn, ȳn)

β2p(yn, ȳn) + r(yn, ȳn)
, Hamming loss =

1
N

N∑

n=1

h(yn, ȳn),

where

h(y, ȳ) =
yT 1 + ȳT 1− 2yT ȳ

V
, p(y, ȳ) =

yT ȳ

ȳT ȳ
, r(y, ȳ) =

yT ȳ

yT y
.

Here, ȳn is our prediction for input label n, and yn the corresponding ground-truth. Since these
measures average over the labels, in order to optimise them we need to average over the labels as
well, and this happens naturally in a setting in which the empirical risk is additive on the labels.2

Instead of maximising a performance measure we frame the problem as minimising a loss function
associated to the performance measure. We assume a known loss function ∆ : Y× Y → R+ which
assigns a non-negative number to every possible pair of outputs. This loss function represents how
much we want to penalise a prediction ȳ when the correct prediction is y, i.e., it has the opposite
semantics of a performance measure. As already mentioned, we will be able to deal with a variety of
loss functions in this framework, but for concreteness of exposition we will focus on a loss derived
from the Macro-Fβ score defined above, whose particular case for β equal to 1 (F1) is arguably the
most popular performance measure for multi-label classification. In our notation, the Fβ score of a
given prediction is

Fβ(y, ȳ) = (1 + β2)
yT ȳ

β2yT y + ȳT ȳ
, (1)

and since Fβ is a score of alignment between y and ȳ, one possible choice for the loss is ∆(y, ȳ) =
1− Fβ(y, ȳ), which is the one we focus on in this paper,

∆(y, ȳ) = 1− (1 + β2)
yT ȳ

β2yT y + ȳT ȳ
. (2)

2.2 Features and Parameterization

Our next assumption is that the prediction for a given input x returns the maximiser(s) of a linear
score of the model parameter vector θ, i.e., a prediction is given by ȳ such that 3

ȳ ∈ argmax
y∈Y

〈φ(x, y), θ〉 . (3)

Here we assume that φ(x, y) is linearly composed of features of the instances encoded in each yv ,
i.e., φ(x, y) =

∑V
v=1 yv(ψv ⊗ x). The vector ψv is the feature representation for the instance v.

The map φ(x, y) will be the zero vector whenever yv = 0, i.e., when instance v does not have label
x. The feature map φ(x, y) has a total of DN dimensions, where D is the dimensionality of our
instance features (ψv) and N is the number of labels. Therefore DN is the dimensionality of our
parameter θ to be learned.

2.3 Optimisation Problem

We are now ready to formulate our estimator. We assume an initial, ‘ideal’ estimator taking the form

θ∗ = argmin
θ

[(
1
N

N∑

n=1

∆(ȳn(xn; θ), yn)

)
+

λ

2
‖θ‖2

]
. (4)

In other words, we want to find a model that minimises the average prediction loss in the training set
plus a quadratic regulariser that penalises complex solutions (the parameter λ determines the trade-
off between data fitting and good generalisation). Estimators of this type are known as regularised
risk minimisers [15].

2The Hamming loss also averages over the instances so it can be optimised in the ‘normal’ (not reverse)
direction as well.

3〈A, B〉 denotes the inner product of the vectorized versions of A and B

3

3 Optimisation

3.1 Convex Relaxation

The optimisation problem (4) is non-convex. Even more critical, the loss is a piecewise constant
function of θ.4 A similar problem occurs when one aims at optimising a 0/1 loss in binary classi-
fication; in that case, a typical workaround consists of minimising a surrogate convex loss function
which upper bounds the 0/1 loss, for example the hinge loss, what gives rise to the support vec-
tor machine. Here we use an analogous approach, notably popularised in [16], which optimises a
convex upper bound on the structured loss of (4). The resulting optimisation problem is

[θ∗, ξ∗] = argmin
θ,ξ

[
1
N

N∑

n=1

ξn +
λ

2
‖θ‖2

]
(5)

s.t. 〈φ(xn, yn), θ〉 − 〈φ(xn, y), θ〉 ≥ ∆(y, yn)− ξn, ξn ≥ 0 (6)
∀n, y ∈ Y.

It is easy to see that ξ∗n upper bounds ∆(ȳn
∗ , yn) (and therefore the objective in (5) upper bounds

that of (4) for the optimal solution). Here, ȳn
∗ := argmaxy 〈φ(xn, y), θ∗〉. First note that since the

constraints (6) hold for all y, they also hold for ȳn
∗ . Second, the left hand side of the inequality

for y = ȳn must be non-positive from the definition of ȳ in equation (3). It then follows that
ξ∗n ≥ ∆(ȳn

∗ , yn).

The constraints (6) basically enforce a loss-sensitive margin: θ is learned so that mispredictions y
that incur some loss end up with a score 〈φ(xn, y), θ〉 that is smaller than the score 〈φ(xn, yn), θ〉
of the correct prediction yn by a margin equal to that loss (minus slack ξ). The formulation is a
generalisation of support vector machines for the case in which there are an exponential number of
classes y. It is in this sense that our approach is somewhat related in spirit to [10], as mentioned in
the Introduction. However, as described below, here we can use a method for selecting a polynomial
number of constraints which provably approximates well the original problem.

The optimisation problem (5) has n|Y| = n2V constraints. Naturally, this number is too large to
allow for a practical solution of the quadratic program. Here we resort to a constraint generation
strategy, which consists of starting with no constraints and iteratively adding the most violated con-
straint for the current solution of the optimisation problem. Such an approach is assured to find an
ε-close approximation of the solution of (5) after including only O(ε−2) constraints [16]. The key
problem that needs to be solved at each iteration is constraint generation, i.e., to find the maximiser
of the violation margin ξn,

y∗n ∈ argmax
y∈Y

[∆(y, yn) + 〈φ(xn, y), θ〉] . (7)

The difficulty in solving the above optimisation problem depends on the choice of φ(x, y) and ∆.
Next we investigate how this problem can be solved for our particular choices of these quantities.

3.2 Constraint generation

Using eq.(2) and φ(x, y) =
∑V

v=1 yv(ψv ⊗ x), eq. (7) becomes

y∗n ∈ argmax
y∈Y

〈y, zn〉 . (8)

where

zn = Ψθn − (1 + β2)yn

‖y‖2 + β2 ‖yn‖2
, (9)

and

• Ψ is a V ×D matrix with row v corresponding to ψv;
• θn is the nth column of matrix θ;

4There is a countable number of loss values but an uncountable number of parameters, so there are large
equivalence classes of parameters that correspond to precisely the same loss.

4

Algorithm 1 Reverse Multi-Label Learning
1: Input: training set {(xn, yn)}N

n=1, λ, β, Output: θ
2: Initialize i = 1, θ1 = 0, MAX= −∞
3: repeat
4: for n = 1 to N do
5: Compute y∗n (Naı̈ve: Algorithm 2. Improved: See Appendix)
6: end for
7: Compute gradient gi (equation (12)) and objective oi (equation (11))
8: θi+1 := argminθ

λ
2 ‖θ‖

2 + max(0,max
j≤i

〈gj , θ〉+ oj); i ← i + 1

9: until converged (see [18])
10: return θ

Algorithm 2 Naı̈ve Constraint Generation
1: Input: (xn, yn), Ψ, θ, β, V , Output: y∗n
2: MAX= −∞
3: for k = 1 to V do
4: zn = Ψθn − (1+β2)yn

k+β2‖yn‖2

5: y∗ = argmaxy∈Yk
〈y, zn〉 (i.e. find top k entries in zn in O(V) time)

6: CURRENT= maxy∈Yk 〈y, zn〉
7: if CURRENT>MAX then
8: MAX = CURRENT
9: y∗n = y∗

10: end if
11: end for
12: return y∗n

We now investigate how to solve (8) for a fixed θ. For the purpose of clarity, here we describe a
simple, naı̈ve algorithm. In the appendix we present a more involved but much faster algorithm. A
simple algorithm can be obtained by first noticing that zn depends on y only through the number
of its nonzero elements. Consider the set of all y with precisely k nonzero elements, i.e., Yk =:
{y : ‖y‖2 = k}. Then the objective in (8), if the maximisation is instead restricted to the domain
Yk, is effectively linear in y, since zn in this case is a constant w.r.t. y. Therefore we can solve
separately for each Yk by finding the top k entries in zn. Finding the top k elements of a list of size
V can be done in O(V) time [17]. Therefore we have a O(V 2) algorithm (for every k from 1 to V ,
solve argmaxy∈Yk

〈y, z〉 in O(V) expected time). Algorithm 1 describes in detail the optimisation,
as solved by BMRM [18], and Algorithm 2 shows the naı̈ve constraint generation routine. The
BMRM solver requires both the value of the objective function for the slack corresponding to the
most violated constraint and its gradient. The value of the slack variable corresponding to y∗n is

ξ∗n = ∆(y∗n, yn) + 〈φ(xn, y∗n), θ〉 − 〈φ(xn, yn), θ〉 , (10)
thus the objective function from (5) becomes

1
N

∑

n

∆(y∗n, yn) + 〈φ(xn, y∗n), θ〉 − 〈φ(xn, yn), θ〉+
λ

2
‖θ‖2 , (11)

whose gradient (with respect to θ) is

λθ − 1
N

∑

n

(φ(xn, yn)− φ(xn, y∗n)). (12)

We need both expressions (11) and (12) in Algorithm 1.

3.3 Prediction at Test Time

The problem to be solved at test time (eq. (3)) has the same form as the problem of constraint
generation (eq. (7)), the only difference being that zn = Ψθn (i.e., the second term in eq. (9), due to
the loss, is not present). Since zn a constant vector, the solution y∗n for (7) is the vector that indicates
the positive entries of zn, which can be efficiently found in O(V). Therefore inference at prediction
time is very fast.

5

Table 1: Evaluation scores and cor-
responding losses

score ∆(y, ȳ)
macro-Fβ 1− (1+β2)(yT ȳ)

β2yT y+ȳT ȳ

macro-precision 1− yT ȳ
ȳT ȳ

macro-recall 1− yT ȳ
yT y

Hamming loss yT 1+ȳT 1−2yT ȳ
V

Table 2: Datasets. #train/#test denotes the number of
observations used for training and testing respectively;
N is the number of labels and D the dimensionality of
the features.

dataset domain #train #test N D
yeast biology 1500 917 14 103
scene image 1211 1196 6 294
medical text 645 333 45 1449
enron text 1123 579 53 1001
emotions music 391 202 6 72

3.4 Other scores

Up to now we have focused on optimising Macro-Fβ , which already gives us several scores, in
particular Macro-F1, macro-recall and macro-precision. We can however optimise other scores, in
particular the popular Hamming loss – Table 1 shows a list with the corresponding loss, which we
then plug in eq.(4).

Note that for Hamming loss and macro-recall the denominator is constant, and therefore it is not
necessary to solve (8) multiple times as described earlier, which makes constraint generation as fast
as test-time prediction (see subsection 3.3).

4 Experimental Results

In this section we evaluate our method in several real world datasets, for both macro-Fβ and Ham-
ming loss. These scores were chosen because macro-Fβ is a generalisation of the most relevant
scores, and the Hamming loss is a generic, popular score in the multi-label classification literature.

Datasets
We used 5 publicly available5 multi-label datasets: yeast, scene, medical, enron and emotions. We
selected these datasets because they cover a variety of application domains – biology, image, text
and music – and there are published results of competing methods on them for some of the popular
evaluation measures for MLC (macro-F1 and Hamming loss). Table 2 describes them in more detail.

Model selection
Our model requires only one parameter: λ, the trade-off between data fitting and good generalisa-
tion. For each experiment we selected it with 5-fold cross-validation using only the training data.

Implementation
Our implementation is in C++, using the Bundle Methods for Risk Minimization (BMRM) of [18]
as a base. Source code is available6 under the Mozilla Public License.7

Comparison to published results on Macro-F1

In our first set of experiments we compared our model to published results on the Macro-F1 score.
We strived to make our comparison as broad as possible, but we limited ourselves to methods with
published results on public datasets, where the experimental setting was described in enough detail
to allow us to make a fair comparison.

We therefore compared our model to Canonical Correlation Analysis [3] (CCA), Binary Method [9]
(BM), Classifier Chains [4] (CC), Subset Mapping [19] (SM), Meta Stacking [12] (MS), Ensembles
of Binary Method [4] (EBM) , Ensembles of Classifier Chains [4] (ECC), Ensembles of Pruned Sets
[11] (EPS) and Random K Label Subsets [10] (RAKEL).

Table 3 summarizes our results, along with competing methods’ which were taken from compilations
by [3] and [4]. We can see that our model has the best performance in yeast, medical and enron. In

5http://mulan.sourceforge.net/datasets.html
6http://users.cecs.anu.edu.au/∼jpetterson/.
7http://www.mozilla.org/MPL/MPL-1.1.html

6

http://www.mozilla.org/MPL/MPL-1.1.html
http://mulan.sourceforge.net/datasets.html
http://users.cecs.anu.edu.au/~jpetterson/

scene it doesn’t perform as well – we suspect this is related to the label cardinality of this dataset:
almost all instances have just one label, making this essentially equivalent to a multiclass dataset.

Comparison to published results on Hamming Loss
To illustrate the flexibility of our model we also evaluated it on the Hamming loss. Here, we com-
pared our model to classifier chains [4] (CC), probabilistic classifier chains [1] (PCC), ensembles of
classifier chains [4] (ECC) and ensembled probabilistic classifier chains [1] (EPCC). These are the
methods for which we could find Hamming loss results on publicly available data.

Table 4 summarizes our results, along with competing methods’ which were taken from a compila-
tion by [1]. As can be seen, our model has the best performance on both datasets.

Results on Fβ

One strength of our method is that it can be optimised for the specific measure we are interested
in. In Macro-Fβ , for example, β is a trade-off between precision and recall: when β → 0 we
recover precision, and when β → ∞ we get recall. Unlike with other methods, given a desired
precision/recall trade-off encoded in a choice of β, we can optimise our model such that it gets
the best performance on Macro-Fβ . To show this we ran our method on all five datasets, but this
time with different choices of β, ranging from 10−2 to 102. In this case, however, we could not
find published results to compare to, so we used Mulan8, an open-source library for learning from
multi-label datasets, to train three models: BM[9], RAKEL[10] and MLKNN[20]. BM was chosen
as a simple baseline, and RAKEL and MLKNN are the two state-of-the-art methods available in the
package.

MLKNN has two parameters: the number of neighbors k and a smoothing parameter s controlling
the strength of the uniform prior. We kept both fixed to 10 and 1.0, respectively, as was done in [20].
RAKEL has three parameters: the number of models m, the size of the labelset k and the threshold
t. Since a complete search over the parameter space would be impractical, we adopted the library’s
default for t and m (respectively 0.5 and 2 ∗N) and set k to N

2 as suggested by [4]. For BM we kept
the library’s defaults.

In Figure 1 we plot the results. We can see that BM tends to prioritize recall (right side of the plot),
while ML-KNN and RAKEL give more emphasis to precision (left side). Our method, however,
goes well in both sides, as it is trained separately for each value of β. In both scene and yeast it
dominates the right side while is still competitive on the left side. And in the other three datasets –
medical, enron and emotions – it practically dominates over the entire range of β.

5 Conclusion and Future Work
We presented a new approach to multi-label learning which consists of predicting sets of instances
from the labels. This apparent unintuitive approach is in fact natural since, once the problem is
viewed from this perspective, many popular performance measures admit convex relaxations that
can be directly and efficiently optimised with existing methods. The method only requires one pa-
rameter, as opposed to most existing methods, which have several. The method leverages on existing
tools from structured output learning, which gives us certain theoretical guarantees. A simple ver-
sion of constraint generation is presented for small problems, but we also developed a scalable, fast
version for dealing with large datasets. We presented a detailed experimental comparison against
several state-of-the-art methods and overall our performance is notably superior.

A fundamental limitation of our current approach is that it does not handle dependencies among
labels. It is however possible to include such dependencies by assuming for example a bivariate
feature map on the labels, rather than univariate. This however complicates the algorithmics, and is
left as subject for future research.

Acknowledgements
We thank Miro Dudı́k as well as the anonymous reviewers for insightful observations that helped to
improve the paper. NICTA is funded by the Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

8http://mulan.sourceforge.net/

7

http://mulan.sourceforge.net/

Table 3: Macro-F1 results. Bold face indicates the best performance. We don’t have results for CCA
in the Medical and Enron datasets.

Dataset Ours CCA CC BM SM MS ECC EBM EPS RAKEL
Yeast 0.440 0.346 0.346 0.326 0.327 0.331 0.362 0.364 0.420 0.413
Scene 0.671 0.374 0.696 0.685 0.666 0.694 0.742 0.729 0.763 0.750
Medical 0.420 - 0.377 0.364 0.321 0.370 0.386 0.382 0.324 0.377
Enron 0.243 - 0.198 0.197 0.144 0.198 0.201 0.201 0.155 0.206

Table 4: Hamming loss results. Bold face indicates the best performance.

Dataset Ours CC PCC ECC EPCC
Scene 0.1271 0.1780 0.1780 0.1503 0.1498
Emotions 0.2252 0.2448 0.2417 0.2428 0.2372

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0.4

0.5

0.6

0.7

0.8

0.9

1
yeast

log(β)

m
ac

ro
−F

β

ML−KNN
RaKEL
BM
Our method

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
scene

log(β)

m
ac

ro
−F

β

ML−KNN
RaKEL
BM
Our method

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
medical

log(β)

m
ac

ro
−F

β

ML−KNN
RaKEL
BM
Our method

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
enron

log(β)

m
ac

ro
−F

β

ML−KNN
RaKEL
BM
Our method

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0.4

0.5

0.6

0.7

0.8

0.9

1
emotions

log(β)

m
ac

ro
−F

β

ML−KNN
RaKEL
BM
Our method

Figure 1: Macro-Fβ results on five datasets, with β ranging from 10−2 to 102 (i.e., log10 β ranging
from -2 to 2). The center point (log β = 0) corresponds to macro-F1. β controls a trade-off between
Macro-precision (left side) and Macro-recall (right side).

8

References
[1] Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hüllermeier. Bayes Optimal Multilabel

Classification via Probabilistic Classifier Chains. In Proc. Intl. Conf. Machine Learning, 2010.
[2] Xinhua Zhang, T. Graepel, and Ralf Herbrich. Bayesian Online Learning for Multi-label and

Multi-variate Performance Measures. In Proc. Intl. Conf. on Artificial Intelligence and Statis-
tics, volume 9, pages 956–963, 2010.

[3] Piyush Rai and Hal Daume. Multi-Label Prediction via Sparse Infinite CCA. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural
Information Processing Systems 22, pages 1518–1526. 2009.

[4] Jesse Read, Bernhard Pfahringer, Geoffrey Holmes, and Eibe Frank. Classifier chains for
multi-label classification. In Wray L. Buntine, Marko Grobelnik, Dunja Mladenic, and John
Shawe-Taylor, editors, ECML/PKDD (2), volume 5782 of Lecture Notes in Computer Science,
pages 254–269. Springer, 2009.

[5] André Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In Annual
ACM Conference on Research and Development in Information Retrieval, pages 274–281,
2005.

[6] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. TagProp: Dis-
criminative Metric Learning in Nearest Neighbor Models for Image Auto-Annotation. In Proc.
Intl. Conf. Computer Vision, 2009.

[7] Douglas W. Oard and Jason R. Baron. Overview of the TREC 2008 Legal Track.
[8] Linli Xu, Martha White, and Dale Schuurmans. Optimal reverse prediction. Proc. Intl. Conf.

Machine Learning, pages 1–8, 2009.
[9] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P. Vlahavas. Mining Multi-label Data.

Springer, 2009.
[10] Grigorios Tsoumakas and Ioannis P. Vlahavas. Random k-labelsets: An ensemble method

for multilabel classification. In Proceedings of the 18th European Conference on Machine
Learning (ECML 2007), pages 406–417, Warsaw, Poland, 2007.

[11] Jesse Read, Bernhard Pfahringer, and Geoff Holmes. Multi-label classification using ensem-
bles of pruned sets. In ICDM ’08: Proceedings of the 2008 Eighth IEEE International Confer-
ence on Data Mining, pages 995–1000, Washington, DC, USA, 2008. IEEE Computer Society.

[12] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled classifica-
tion. In Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 22–30. Springer, 2004.

[13] Martin Jansche. Maximum expected F-measure training of logistic regression models. HLT,
pages 692–699, 2005.

[14] T. Joachims. A support vector method for multivariate performance measures. In Proc. Intl.
Conf. Machine Learning, pages 377–384, San Francisco, California, 2005. Morgan Kaufmann
Publishers.

[15] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.
[16] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured

and interdependent output variables. J. Mach. Learn. Res., 6:1453–1484, 2005.
[17] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.

Addison-Wesley, Reading, Massachusetts, second edition, 1998.
[18] Choon Hui Teo, S. V. N. Vishwanathan, Alex J. Smola, and Quoc V. Le. Bundle methods for

regularized risk minimization. Journal of Machine Learning Research, 11:311–365, 2010.
[19] Robert E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated pre-

dictions. Machine Learning, 37(3):297–336, 1999.
[20] Min-Ling Zhang and Zhi-Hua Zhou. ML-KNN: A lazy learning approach to multi-label learn-

ing. Pattern Recognition, 40(7):2038–2048, July 2007.

9

