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Abstract

Algorithms based on iterative local approximations present a practical approach
to optimal control in robotic systems. However, they generally require the tem-
poral parameters (for e.g. the movement duration or the timepoint of reaching
an intermediate goal) to be specifieda priori. Here, we present a methodology
that is capable of jointly optimizing the temporal parameters in addition to the
control command profiles. The presented approach is based ona Bayesian canon-
ical time formulation of the optimal control problem, with the temporal mapping
from canonical to real time parametrised by an additional control variable. An ap-
proximate EM algorithm is derived that efficiently optimizes both the movement
duration and control commands offering, for the first time, apractical approach to
tackling generic via point problems in a systematic way under the optimal control
framework. The proposed approach, which is applicable to plants with non-linear
dynamics as well as arbitrary state dependent and quadraticcontrol costs, is eval-
uated on realistic simulations of a redundant robotic plant.

1 Introduction

Control of sensorimotor systems, artificial or biological,is inherently both a spatial and temporal
process. Not only do we have to specify where the plant has to move to but also when it reaches
that position. In some control schemes, the temporal component is implicit; for example, with a
PID controller, movement duration results from the application of the feedback loop, while in other
cases it is explicit, like for example in finite or receding horizon optimal control approaches where
the time horizon is set explicitly as a parameter of the problem [8, 13].

Although control based on an optimality criterion is certainly attractive, practical approaches for
stochastic systems are currently limited to the finite horizon [9, 16] or first exit time formulation [14,
17]. The former does not optimize temporal aspects of the movement, i.e., duration or the time when
costs for specific sub goals of the problem are incurred, assuming them as givena priori. However,
how should one choose these temporal parameters? This question is non trivial and important even
while considering a simple reaching problem. The solution generally employed in practice is to use
a apriori fixed duration, chosen experimentally. This can result in not reaching the goal, having to
use unrealistic range of control commands or excessive (wasteful) durations for short distance tasks.
The alternative first exit time formulation, on the other hand, either assumes specific exit states in the
cost function and computes the shortest duration trajectory which fulfils the task or assumes a time
stationary task cost function and computes the control which minimizes the joint cost of movement
duration and task cost [17, 1, 14]. This formalism is thus only directly applicable to tasks which do
not require sequential achievement of multiple goals. Although this limitation could be overcome
by chaining together individual time optimal single goal controllers, such a sequential approach has
several drawbacks. First, if we are interested in placing a cost on overall movement duration, we are
restricted to linear costs if we wish to remain time optimal.A second more important flaw is that
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future goals should influence our control even before we haveachieved the previous goal, a problem
which we highlight during our comparative simulation studies.

A wide variety of successful approaches to address stochastic optimal control problems have been
described in the literature [6, 2, 7]. The approach we present here builds on a class of approximate
stochastic optimal control methods which have been successfully used in the domain of robotic ma-
nipulators and in particular, the iLQG [9] algorithm used by[10], and theApproximate Inference
Control (AICO) algorithm [16]. These approaches, as alluded to earlier, are finite horizon formu-
lations and consequently require the temporal structure ofthe problem to be fixeda priori. This
requirement is a direct consequence of a fixed length discretization of the continuous problem and
the structure of the temporally non-stationary cost function used, which binds incurrence of goal
related costs to specific (discretised) time points. The fundamental idea proposed here is to refor-
mulate the problem in canonical time and alternately optimize the temporal and spatial trajectories.
We implement this general approach in the context of the approximate inference formulation of
AICO, leading to anExpectation Maximisation(EM) algorithm where the E-Step reduces to the
standard inference control problem. It is worth noting thatdue to the similarities between AICO,
iLQG and other algorithms, e.g., DDP [6], the same principleand approach should be applicable
more generally. The proposed approach provides an extension to the time scaling approach [12, 3]
by considering the scaling for a complete controlled system, rather then a single trajectory. Addi-
tionally, it also extends previous applications of Expectation Maximisation algorithms for system
identification of dynamical systems, e.g. [4, 5], which did not consider the temporal aspects.

2 Preliminaries

Let us consider a process with statex ∈ R
Dx and controlsu ∈ R

Du which is of the form

dx = (F(x) + Bu)dt + dξ
〈
dξdξ⊤

〉
= Q (1)

with non-linear state dependent dynamicsF , control matrixB and Brownian motionξ, and define
a cost of the form

L(x(·),u(·)) =

∫ T

0

[
C(x(t), t) + u(t)⊤Hu(t)

]
dt , (2)

with arbitrary state dependent costC and quadratic control cost. Note in particular thatT , the
trajectory length, is assumed to be known. The closed loop stochastic optimal control problem is to
find the policyπ : x(t) → u(t) given by

π∗ = argmin
π

E
x,u|π,x(0) {L(x(·),u(·))} . (3)

In practice, the continuous time problem is discretized into a fixed number ofK steps of length∆t,
leading to the discreet problem with dynamics

P(xk+1|xk,uk) = N (xk+1|xk + (F(x) + Bu)∆t,Q∆t) , (4)

where we useN (·|a, A) to denote a Gaussian distribution with meana and covarianceA, and cost

L(x1:K ,u1:K) = CK(xK) +

K−1∑

k=0

[
∆tCk(xk) + u⊤k(H∆t)uk

]
. (5)

Note that here we used the Euler Forward Method as the discretization scheme, which will prove
advantageous if a linear cost on the movement duration is chosen, leading to closed form solution
for certain optimization problems. However, in other cases, alternative discretisation methods could
be used and indeed, be preferable.

2.1 Approximate Inference Control

Recently, it has been suggested to consider a Bayesian inference approach [16] to (discreet) optimal
control problems formalised in Section 2. With the probabilistic trajectory model in (4) as a prior,
an auxiliary (binary) dynamic random task variablerk, with the associated likelihood

P(rk = 1|xk,uk) = exp
{
−(∆tCk(xk) + u⊤k(H∆t)uk)

}
, (6)
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Figure 1: The graphical models for(a) standard inference control and(b) the AICO-T model
with canonical time. Circle and square nodes indicate continous and discreet variables respectively.
Shaded nodes are observed.

is introduced, i.e., we interpret the cost as a negative log likelihood of task fulfilment. Inference
control consists of computing the posterior conditioned onthe observationr0:K = 1 within the
resulting model (illustrated as a graphical model in Fig. 1 (a)), and from it obtaining themaximum
a posteriori(MAP) controls. For cases, where the process and cost are linear and quadratic inu
respectively, the controls can be marginalised in closed form and one is left with the problem of
computing the posterior

P (x0:K |r0:K = 1) =
∏

k

N (xk+1|xk + F(xk)∆t,W∆t) exp(−∆tCk(xk)) , (7)

with W := Q + BH−1B⊤.

As this posterior is in general not tractable, the AICO [16] algorithm computes a Gaussian approxi-
mation to the true posterior using an approximate message passing approach similar in nature to EP
(details are given in supplementary material). The algorithm has been shown to have competitive
performance when compared to iLQG [16].

3 Temporal Optimization for Optimal Control

Often the state dependent cost termC(x, t) in (2) can be split into a set of costs which are incurred
only at specific times: also referred to as goals, and others which are independent of time, that is

C(x, t) = J (x) +

N∑

n=1

δt=t̂n
Vn(x) . (8)

Classically,̂tn refer toreal timeand are fixed. For instance, in a reaching movement, generally a cost
that is a function of the distance to the target is incurred only at the final timeT while collision costs
are independent of time and incurred throughout the movement. In order to allow the time point at
which the goals are achieved to be influenced by the optimization, we will re-frame the goal driven
part of the problem in acanonical timeand in addition to optimizing the controls, also optimize the
mapping from canonical to real time.

Specifically, we introduce into the problem defined by (1) & (2) the canonical time variableτ with
the associated mapping

τ = β(t) =

∫ t

0

1

θ(s)
ds , θ(·) > 0 , (9)

with θ as an additional control. We also reformulate the cost in terms of the timeτ as1

L(x(·),u(·), θ(·)) =

N∑

n=1

Vn(x(β−1(τ̂n))) +

∫ τ̂N

0

T (θ(s))ds

+

∫ β−1(τ̂N )

0

[
J (x(t)) + u(t)⊤Hu(t)

]
dt , (10)

1Note that asβ is strictly monotonic and increasing, the inverse functionβ−1 exists
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with T an additional cost term over the controlsθ and thêτ1:N ∈ R assumed as given. Based on the
last assumption, we are still required to choose the time point at which individual goals are achieved
and how long the movement lasts; however, this is now done in terms of the canonical time and since
by controllingθ, we can change the real time point at which the cost is incurred, the exact choices
for τ̂1:N are relatively unimportant. The real time behaviour is mainly specified by the additional
cost termT over the new controlsθ which we have introduced. Note that in the special case where
T is linear, we have

∫ τ̂N

0 T (θs)ds = T (T ), i.e.,T is equivalent to a cost on the total movement
duration. Although here we will stick to the linear case, theproposed approach is also applicable
to non-linear duration costs. We briefly note the similarityof the formulation to the canonical time
formulation of [11] used in an imitation learning setting.

We now discretize the augmented system in canonical time with a fixed number of stepsK. Making
the arbitrary choice of a step length of 1 inτ induces, by (9), a sequence of steps int with length2

∆k = θk. Using this time step sequence and (4) we can now obtain a discreet process in terms of
the canonical time with an explicit dependence onθ0:K−1. Discretization of the cost in (10) gives

L(x1:K ,u1:K , θ0:K−1) =

N∑

n=1

Vn(x
k̂n

) +

K−1∑

k=0

[
T (θk) + J (xk)θk + u⊤kHθkuk

]
, (11)

for some given̂k1:N . We now have a new formulation of the optimal control problemthat no longer
of the form of equations (4) & (5), e.g. (11) is no longer quadratic in the controls asθ is a control.

Proceeding as for standard inference control and treating the cost (11) as a neg-log likelihood of
an auxiliary binary dynamic random variable, we obtain the inference problem illustrated by the
Bayesian network in Figure 1(b). With controlsu marginalised, our aim is now to find the posterior
P(x0:K , θ0:K−1|r0:K = 1). Unfortunately, this problem is intractable even for the simplest case, e.g.
LQG with linear duration cost. However, observing that for given θk ’s, the problem reduces to the
standard case of Section 2.1 suggest restricting ourselvesto finding the MAP estimate forθ0:K−1 and
the associated posteriorP(x0:K |θMAP

0:K−1, r0:K = 1) using an EM algorithm. The solution is obtained
by iterating the E- & M-Steps (see below) until theθ’s have converged; we call this algorithmAICO-
T to reflect the temporal aspect of the optimization.

3.1 E-Step

In general, the aim of the E-Step is to calculate the posterior over the unobserved variables, i.e. the
trajectories, given the current parameter values, i.e. theθi’s.

qi(x0:K) = P(x0:K |r0:K = 1, θi
0:K−1) . (12)

However, as will be shown below we actually only require the expectations
〈
xkx

⊤
k

〉
and

〈
xkx

⊤
k+1

〉

during the M-Step. As these are in general not tractable, we compute a Gaussian approximation to
the posterior, following an approximate message passing approach with linear and quadratic approx-
imations to the dynamics and cost respectively [16] (for details, refer to supplementary material).

3.2 M-Step

In the M-Step, we solve
θi+1
0:K−1 = argmax

θ0:K−1

Q(θ0:K−1|θ
i
0:K−1) , (13)

with

Q(θ0:K−1|θ
i
0:K−1) = 〈log P(x0:K , r0:K = 1|θ0:K−1)〉

=

K−1∑

k=0

〈log P(xk+1|xk, θk)〉 −
K−1∑

k=1

[T (θk) + θk 〈J (xk)〉] + constant ,

(14)
where〈·〉 denotes the expectation with respect to the distribution calculated in the E-Step, i.e., the
posteriorqi(x0:K) over trajectories given the previous parameter values. Therequired expectations,

2under the assumption of constantθ(·) during each step
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〈J (xk)〉 and

〈log P(xk+1|xk, θk)〉 = −
Dx

2
log |W̃k| −

1

2

〈
(xk+1 − F̃(xk))⊤W̃−1

k (xk+1 − F̃(xk))
〉

, (15)

with F̃(xk) = xk + F(xk)θk andW̃k = θkW, are in general not tractable. Therefore, we take
approximations

F(xk) ≈ ak + Akxk and J (xk) ≈
1

2
x⊤kJkxk − j⊤kxk , (16)

choosing the mean ofqi(xk) as the point of approximation, consistent with the equivalent approxi-
mations made in the E-Step. Under these approximations, it can be shown that, up to additive terms
independent ofθ,

Q(θ0:K−1|θ
i
0:K−1) = −

K−1∑

k=0

[
Dx

2
log |W̃k| + T (θk) +

1

2
Tr(W̃−1

k

〈
xk+1x

′
k+1

〉
)

− Tr(Ã′
kW̃

−1
k 〈xk+1x

′
k〉) +

1

2
Tr(ÃkW̃

−1
k Ã′

k 〈xkx
′
k〉) + ã⊤kW̃

−1
k Ãk 〈xk〉

+
1

2
ã⊤kW̃

−1
k ãk + θk

[
1

2
Tr(Jk

〈
xkx

⊤
k

〉
− jk 〈xk〉

] ]
,

with ã⊤k = θkak, Ãk = I + θkAk and taking partial derivatives leads to

∂Q

∂θk

=
1

2
θ−2

k Tr
(
W−1(

〈
xk+1x

⊤
k+1

〉
− 2

〈
xk+1x

⊤
k

〉
+

〈
xkx

⊤
k

〉
)
)
−

D2
x

2
θ−1

k

−
1

2

[
Tr(AW−1A⊤

〈
xkx

⊤
k

〉
) + 2

dT

dθ

∣∣∣∣
θk

+ a⊤kW
−1ak + 2a⊤kW

−1Ak 〈xk〉

+ Tr(Jk

〈
xkx

⊤
k

〉
) − 2jk 〈xk〉

]
.

(17)

In the general case, we can now use gradient ascent to improvetheθ’s. However, in the specific
case whereT is a linear function ofθ, we note that0 = ∂Q

∂θk

is a quadratic inθ−1
k and the unique

extremum under the constraintθk > 0 can be found analytically.

3.3 Practical Remarks

The performance of the algorithm can be greatly enhanced by using the result of the previous E-
Step as initialisation for the next one. As this is likely to be near the optimum with the new temporal
trajectory, AICO converges within only a few iterations. Additionally, in practise it is often sufficient
to restrict theθk’s between goals to be constant, which is easily achieved asQ is a sum over theθ’s.

The proposed algorithms leads to a variation of discretization step length which can be a problem.
For one, the approximation error increases with the step length which may lead to wrong results. On
the other hand, the algorithm may lead to control frequencies which are not achievable in practice.
In general, a fixed control signal frequency may be prescribed by the hardware system. In practice,
θ’s can be kept in a prescribed range by adjusting the number ofdiscretization stepsK after an
M-Step.

Finally, although we have chosen to express the time cost in terms of a function of theθ’s, often it
may be desirable to consider a cost directly over the duration T . Noting thatT =

∑
θk, all that is

required is to replacedT
dθ

with ∂T (
P

θ)
∂θk

in (17).

4 Experiments

The proposed algorithm was evaluated in simulation. As a basic plant, we used a kinematic simula-
tion of a 2 degrees of freedom (DOF) planar arm, consisting oftwo links of equal length. The state
of the plant is given byx = (q, q̇), with q ∈ R

2 the joint angles anḋq ∈ R
2 associated angular
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Figure 2: Temporal scaling behaviour using AICO-T.(a & b) Effect of changing time-cost weight
α, (effectively the ratio between reaching cost and durationcost) on(a) duration and(b) reaching
cost (control + state cost).(c) Comparison of reaching costs (control + error cost) for AICO-T and
a fixed duration approach, i.e. AICO.

velocities. The controlsu ∈ R
2 are the joint space accelerations. We also added some iid noise with

small diagonal covariance.

For all experiments, we used a quadratic control cost and thestate dependent cost term:

V(xk) =
∑

i

δ
k=k̂i

(φi(xk) − y∗
i )⊤Λi(φi(xk) − y∗

i ) , (18)

for some given̂ki and employed a diagonal weight matrixΛi while y∗
i represented the desired state

in task space. For point targets, the task space mapping isφ(x) = (x, y, ẋ, ẏ)⊤, i.e., the map from
x to the vector of end point positions and velocities in task space coordinates. The time cost was
linear, that is,T (θ) = αθ.

4.1 Variable Distance Reaching Task

In order to evaluate the behaviour of AICO-T we applied it to areaching task with varying start-
target distance. Specifically, for a fixed start point we considered a series of targets lying equally
spaced along a line in task space. It should be noted that although the targets are equally spaced
in task space and results are shown with respect to movement distance in task space, the distances
in joint space scale non linearly. The state cost (18) contained a single term incurred at the final
discrete step withΛ = 106 · I and the control cost were given byH = 104 · I. Fig. 2(a & b) shows
the movement duration (=

∑
θk) and standard reaching cost3 for different temporal-cost parameters

α (we usedα0 = 2·107), demonstrating that AICO-T successfully trades-off the movement duration
and standard reaching cost for varying movement distances.In Fig. 2(c), we compare the reaching
costs of AICO-T with those obtained with a fixed duration approach, in this case AICO. Note that
although with a fixed, long duration (e.g., AICO with duration T=0.41) the control and error costs
are reduced for short movements, these movements necessarily have up to4× longer durations than
those obtained with AICO-T. For example for a movement distance of 0.2 application of AICO-T
results in a optimised movement duration of 0.07 (cf. Fig. 2(a)), making the fixed time approach
impractical when temporal costs are considered. Choosing ashort duration on the other hand (AICO
(T=0.07)) leads to significantly worse costs for long movements. We further emphasis that the
fixed durations used in this comparison were chosen post hoc by exploiting the durations suggested
by AICO-T in absence of this, there would have been no practical way of choosing them apart
from experimentation. Furthermore, we would like to highlight that, although the results suggests a
simple scaling of duration with movement distance, in cluttered environments and plants with more
complex forward kinematics, an efficient decision on the movement duration cannot be based only
on task space distance.

4.2 Via Point Reaching Tasks

We also evaluated the proposed algorithm in a more complex via point task. The task requires the
end-effector to reach to a target, having passed at some point through a given second target, the

3n.b. thestandard reaching costis the sum of control costs and cost on the endpoint error, without taking
duration into account, i.e., (11) without theT (θ) term.
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Figure 3: Comparision of AICO-T (solid) to the common modelling approach, using AICO,
(dashed) with fixed times on a via point task.(a) End point task space trajectories for two dif-
ferent via points (circles) obtained for a fixed start point (triangle). (b) The corresponding joint
space trajectories.(c) Movement durations and reaching costs (control + error costs) from 10 ran-
dom start points. The proportion of the movement duration spend before the via point is shown in
light gray (mean in the AICO-T case).

via point. This task is of interest as it can be seen as an abstraction of a diverse range of complex
sequential tasks that requires one to achieve a series of sub-tasks in order to reach a final goal. This
task has also seen some interest in the literature on modeling of human movement using the optimal
control framework, e.g., [15]. Here the common approach is to choose the time point at which
one passes the via point such as to divide the movement duration in the same ratio as the distances
between the start point, via point and end target. This requires on the one hand prior knowledge of
these movement distances and on the other, makes the implicit assumption that the two movements
are in some sense independent.

In a first experiment, we demonstrate the ability of our approach to solve such sequential problems,
adjusting movement durations between sub goals in a principled manner, and show that it improves
upon the standard modelling approach. Specifically, we apply AICO-T to the two via point problems
illustrated in Fig. 3(a) with randomised start states4. For comparison, we follow the standard mod-
eling approach and apply AICO to compute the controller. We again choose the movement duration
for the standard case post hoc to coincide with the mean movement duration obtained with AICO-T
for each of the individual via point tasks. Each task is expressed using a cost function consisting of
two point target cost terms. Specifically, (18) takes the form

V(xk) = δk= K

2

(φ(xk) − y∗
v)⊤Λv(φ(xk) − y∗

v) + δk=K(φ(xk) − y∗
e)⊤Λe(φ(xk) − y∗

e) , (19)

with K the number of discrete steps and diagonal matricesΛv = diag(λpos, λpos, 0, 0), Λe =
diag(λpos, λpos, λvel, λvel), whereλpos = 105 & λvel = 107 and vectorsy∗

v = (·, ·, 0, 0)⊤, y∗
e =

(·, ·, 0, 0)⊤ desired states for individual via point and target, respectively. Note that the cost function
does not penalise velocity at the via point but encourages the stopping at the target. While admittedly
the choice of incurring the via point cost at the middle of themovement (K2 ) is likely to be a sub-
optimal choice for the standard approach, one has to consider that in more complex task spaces, the
relative ratio of movement distances may not be easily accessible and one may have to resort to the
most intuitive choice for the uninformed case as we have donehere. Note that although for AICO-T
this cost is incurred at the same discrete step, we allowθ before and after the via point to differ, but
constrain them to be constant throughout each part of the movement, hence, allowing the cost to be
incurred at an arbitrary point in real time. We sampled the initial position of each joint independently
from a Gaussian distribution with a variance of3◦. In Fig. 3(a&b), we showmaximum a posteriori
(MAP) trajectories in task space and joint space for controllers computed for the mean initial state.
Interestingly, although the end point trajectory for thenear via point produced by AICO-T may
look sub-optimal than that produced by the standard AICO algorithm, closer examination of the
joint space trajectories reveal that our approach results in more efficient actuation trajectories. In
Fig. 3(c), we illustrate the resulting average movement durations and costs of the mean trajectories.
As can be seen, AICO-T results in the expected passing times for the two via points, i.e. early
vs. late in the movement for the near and far via point, respectively. This directly leads to a lower
incurred cost compared to un-optimised movement durations.

4For the sake of clarity, Fig. 3(a&b) show MAP trajectories ofcontrollers computed for the mean start state.
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Figure 4: Joint (solid) vs. sequential (dashed) optimisation using AICO-T for a sequential (via
point) task. (a) Task space trajectories for a fixed start point (triangle). Viapoint and target are
indicated by the circle and square, respectively.(b) The corresponding joint space trajectories.(c)
The movement durations and reaching costs (control + error cost) for 10 random start points. The
mean proportion of the movement duration spend before the via point is shown in light gray.

In order to highlight the shortcomings of sequential time optimal control, next we compare plan-
ning a complete movement over sequential goals to planning asequence of individual movements.
Specifically, using AICO-T, we compare planning the whole via point movement (joint planner) to
planning a movement from the start to the via point followed by a second movement from the end
point of the first movement (n.b. not from the via point) to theend target (sequential planner). The
joint planner used the same cost function as the previous experiment. For the sequential planner,
each of the two sub-trajectories had half the number of discrete time steps of the joint planner and
the cost functions were given by appropriately splitting (19), i.e.,

V1(xk) = δk= K

2

(φ(xk)−y∗
v)⊤Λv(φ(xk)−y∗

v) and V2(xk) = δk= K

2

(φ(xk)−y∗
e)

⊤Λe(φ(xk)−y∗
e) ,

with Λv, Λe,y
∗
v,y∗

e as for (19). The start states were sampled according to the distribution used in
the last experiment and in Fig. 4(a&b), we plot the MAP trajectories for the mean start state, in task
as well as joint space. The results illustrate that sequential planning leads to sub-optimal results as
it does not take future goals into consideration. This leadsdirectly to a higher cost (c.f. Fig. 4(c)),
calculated from trials with randomised start state. One should however note that this effect would
be less pronounced if the cost required stopping at the via point, as it is the velocity away from the
end target which is the main problem for the sequential planner.

5 Conclusion

The contribution of this paper is a novel method for jointly optimizing a movement trajectory and
its time evolution (temporal scale and duration) in the stochastic optimal control framework. As a
special case, this solves the problem of an unknown goal horizon and the problem of trajectory op-
timization through via points when the timing of intermediate constraints is unknown and subject to
optimization. Both cases are of high relevance in practicalrobotic applications where pre-specifying
a goal horizon by hand is common practice but typically lacksjustification.

The method was derived in the form of an Expectation-Maximization algorithm where the E-step ad-
dresses the stochastic optimal control problem reformulated as an inference problem and the M-step
re-adapts the time evolution of the trajectory. In principle, the proposed framework can be applied
to extend any algorithm that – directly or indirectly – provides us with an approximate trajectory
posterior in each iteration. AICO [16] does so directly in terms of a Gaussian approximation; simi-
larly, the local LQG solution implicit in iLQG [9] can, with little extra computational cost, be used
to compute a Gaussian posterior over trajectories. For algorithms like DDP [6], which do not lead to
an LQG approximation, we can employ the Laplace method to obtain Gaussian posteriors or adjust
the M-Step for the non-Gaussian posterior. We demonstratedthe algorithm on a standard reaching
task with and without via points. In particular, in the via point case, it becomes obvious that fixed
horizon methods and sequenced first exit time methods cannotfind equally efficient motions as the
proposed method.
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