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The supplementary material contains two sections. The first collect all the proofs in the paper. The
second, gives further developments and examples of completely regular RKHS.

1 Proofs

In this section we collect all the proofs.

Proof of Proposition 1. We prove that (i) implies (ii). Given x0 /∈ C, by contradiction, assume
there is f ∈ H such that f(x0) 6= 0, f(x) = 0 for all x ∈ C and Kx0 ∈ RanPC . Clearly,
f ∈ kerPC = RanP⊥C , so that f(x0) = 〈f,Kx0〉 = 0, which is a contradiction.
We prove that (ii) implies (iii). If x ∈ C, then Kx ∈ RanPC by definition of PC , so that FC(x) =
K(x, x), hence C ⊂ {x ∈ X | K(x, x) = FC(x)}. If x 6∈ C, by assumption (I − PC)Kx 6= 0,
thus K(x, x)− FC(x) = ‖(I − PC)Kx‖2 6= 0 and C ⊃ {x ∈ X | K(x, x) = FC(x)}.
We prove that (iii) implies (i). If x0 6∈ C, define f = (I − PC)Kx0 ∈ kerPC , so that f(x) = 0 for
all x ∈ C. Furthermore, f(x0) = K(x0, x0)− FC(x0) 6= 0.
Clearly, (ii) implies that K(x, x) 6= 0 for all x /∈ C.

Proof of Proposition 2. To prove that the sets separated by H are closed with respect to dK , note
that by definition of the metric dK , the map x 7→ Kx is continuous from X , endowed with the
metric dK , into H, so that x 7→ K(x, x) − FC(x) is a continuous map, hence its zero level set is a
closed subset of X .
To show that ifH is separable and the kernel is measurable, then the sets separated byH are measur-
able, we first observe that the map x 7→ Kx is measurable from X into H since H is separable and
K is a measurable kernel (Proposition 3.1 in [1]). As above, it follows that x 7→ K(x, x) − FC(x)
is a measurable map, so that its zero level set is a measurable subset of X .

Proof of Corollary 1. (i) This follows from Proposition 12 and Corollary 3 in [1].

(ii) Condition (a) states that, for any sequence (xj)j∈N such that limj dX(xj , x) = 0 for some
x ∈ X , then limj dK(xj , x) = 0. Hence, the dK-closed subsets are dX -closed, too.
Conversely, if C is dX -closed, (b) implies that C = {x ∈ X | K(x, x) − FC(x) = 0},
which is a dK-closed subset by (i) of Proposition 2.

(iii) It follows from (ii) and (b). Note that, since the points are closed sets for dX , condition (b)
implies that Kx 6= Kt if x 6= t.
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Proof of Lemma 1. Denote by H′ the reproducing kernel Hilbert space with kernel K ′, and define
the map Φ : X → H, Φ(x) = Kx/‖Kx‖. It is simple to check that 〈Φ(y),Φ(x)〉 = K ′(x, y) and
Φ(X)⊥ = {0}, so that the map Φ∗ : H → H′

(Φ∗f)(x) = 〈f,Φ(x)〉
is a unitary operator with K ′x = Φ∗Φ(x). Clearly, for any f ∈ H and x ∈ X

〈Φ∗f,K ′x〉H′ = 〈Φ∗f,Φ∗Φ(x)〉H′ =
〈f,Kx〉H
‖Kx‖

.

The above equality shows thatH andH′ separate the same sets.

Proof of Theorem 1. Without loss of generality, we can assume that the sequence (λn) is nonde-
creasing. For any n define Gn : X → R as Gn(x) =

〈
(T + λnI)−1TKx,Kx

〉
. Clearly, Gn

is continuous. The idea of the proof is to split the error in an approximation error controlling the
deviation of Gn from Fρ and a sample error controlling the deviation of Fn from Gn.

We first deal with the approximation error. Since T is compact and positive, there exists an orthonor-
mal basis (ej) of eigenvectors of T with corresponding sequence (σj) of positive eigenvalues. Hence

Gn(x) =
∑
k

(
σj

σj + λn
)|〈Kx, ej〉|2.

It follows that Gn(x) converges to Fρ(x) for all x ∈ X and the sequence (Gn(x)) is nondecreasing.
Dini’s theorem implies that supx∈C |Gn(x)− Fρ(x)| converges to zero for every compact set C.
For the sample error we can note that

(T + λnI)−1T − (Tn + λnI)−1Tn = λn(T + λnI)−1(Tn − T )(Tn + λnI)−1,

and ‖(T + λnI)−1Kx‖ ≤ 1/λn as well as ‖(Tn + λnI)−1Kx‖ ≤ 1/λn. Then
supx∈X |Gn(x)− Fn(x)| ≤ 1

λn
‖T − Tn‖HS and we can use the concentration results for

‖T − Tn‖HS and the proposed regularization parameter choice to prove convergence of Fn to
Fρ.

Proof of Theorem 2. Without loss of generality, we assume that X is itself compact and we prove
the statement for C = X . The proof is split into two steps. First we show that

lim
n→+∞

sup
x∈Xρ

dK(x,Xn) = 0

Indeed the considered choice of τn implies that there exists n0 ∈ N such that for all n ≥ n0

|Fn(x)− Fρ(x)| ≤ τn ∀x ∈ X.
If x ∈ Xρ,

Fn(x)− 1 = Fn(x)− Fρ(x) ≥ −|Fn(x)− Fρ(x)| ≥ −τn,
so x ∈ Xn and, hence, dK(x,Xn) = 0 for all n ≥ n0.

Then, we prove that
lim

n→+∞
sup
x∈Xn

dK(x,Xρ) = 0

by contradiction. Assume the opposite, then there exists ε > 0 such that for all k ∈ N there is
nk ≥ k and supx∈Xnk dK(x,Xρ) ≥ 2ε. Hence there is xk ∈ Xnk such that

dK(xk, x) ≥ ε for all x ∈ Xρ. (1)

Since X is compact, possibly passing to a subsequence we can assume that (xk)k∈N converges to a
x0. We claim that x0 ∈ Xρ. Indeed

|Fρ(x0)− 1| ≤ |Fρ(x0)− Fρ(xk)|+ |Fρ(xk)− Fnk(xk)|+ |Fnk(xk)− 1|
≤ |Fρ(x0)− Fρ(xk)|+ sup

x∈X
|Fρ(x)− Fnk(x)|+ τnk

where the third term is due to the fact that xk ∈ Xnk so that
1 + τnk ≥ 1 ≥ Fnk(xk) ≥ 1− τnk .

Since nk goes to +∞, Fρ is continuous in x0 and Fn converges to Fρ uniformly, it follows that
Fρ(x0) = 1, that is x0 ∈ Xρ. However, (1) implies that d(x0, x) ≥ ε for all x ∈ Xρ, so that there
is a contradiction.
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2 Complete Regularity: sufficient conditions and examples

In this section we provide some sufficient conditions characterizing completely regular reproducing
kernel Hilbert spaces and we give some examples of such spaces.

The first result is about translation invariant kernels on Rd. We show that if Fourier transform of the
kernel satisfies a suitable growth condition, then the corresponding reproducing kernel Hilbert space
is completely regular. In the following L1(Rd) is the space of integrable functions with respect to
the Lebesgue measure dx in Rd and f̂ is the Fourier transform of f ∈ L1(Rd), defined as

f̂(ω) =
∫
e−2πiω·xf(x)dx

Theorem. Let K : Rd → C be a continuous function in L1(Rd) such that

K̂(ω) ≥ a

(1 + b‖ω‖m)n
∀ω ∈ Rd (2)

for suitable m,n ∈ N and a, b > 0. Then,

(i) the translation invariant kernel K(x, t) = K(x− t) is positive definite and continuous;

(ii) the corresponding reproducing kernel Hilbert spaceH is completely regular.

The proof depends on an explicit characterization of the reproducing kernel Hilbert space H given
by the following result.

Proposition. Let K : Rd → C be a continuous function in L1(Rd) such that K̂ = K̂ is strictly
positive, then the kernel K(x, t) = K(x− t) is positive definite and the corresponding reproducing
kernel is

H =
{
f ∈ L2 |

∫
K̂(ω)−1|f̂(ω)|2dω <∞

}
(3)

Proof. Denote by L2 = L2(Rd) the space of square integrable functions with scalar product 〈·, ·〉2
and recall that F is a unitary operator in L2. We claim that K is a positive definite kernel and
K̂ ∈ L1(Rd). Let LK be the integral operator of kernel K with respect to the Lebesgue measure,
namely

(LKf)(t) =
∫
K(t− x)f(x) dx = (K ∗ f)(t),

which is a bounded operator on L2 since K ∈ L1(Rd). Since LK is a convolution operator, the
Fourier transform makes LK unitary equivalent to the multiplicative operator by K̂. It follows that

〈LKf, f〉2 =
〈
K̂ · f̂ , f̂

〉
2
≥ 0 ∀ f ∈ L2(Rd)

since K̂ ≥ 0 by assumption. Hence LK is a positive operator, so that K is positive definite. Indeed,
let {ϕn}n∈N be a Dirac sequence in 0 and, for each x ∈ X define ϕxn as ϕxn(t) = ϕn(t− x). Fixed
{xi}i=1,2...N ⊂ Rd and {ci}i=1,2...N ⊂ C, set φn =

∑n
i=1 ciϕ

xi
n , then

0 ≤ 〈LKφn, φn〉2 =
n∑

i,j=1

cicj 〈LKϕxin , ϕxjn 〉 −→
n→∞

n∑
i,j=1

cicjK(xi, xj),

where the last equality is due to the continuity of K. Since K is a positive definite function, the
Fourier inversion theorem in L1(Rd) implies that K̂ ∈ L1(Rd), see [2].
Finally, let H be the corresponding reproducing kernel Hilbert space. Since the support of the
Lebesgue measure is Rd, a generalization of the Mercer theorem [1] implies that L1/2

K is a unitary

isomorphism of L2 ontoH. Clearly L̂1/2
K f = K̂1/2f̂ , so that the (3) follows.

The first part of the above proposition is a converse result of Bochner theorem [2]. Given the above
proposition, the proof of the Theorem is straightforward.
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Proof of the Theorem. Condition (2) implies that K̂ is strictly positive, so that (i) is proved by Propo-
sition 2. In particular, from (3) we see that f ∈ H if and only if f ∈ L2 and∫

K̂(ω)−1|f̂(ω)|2dω <∞.

Clearly, if f ∈ C∞c (Rd), then f̂ is a Schwartz function on Rd, so that f ∈ H by (2).

A second result gives a very simple tool to construct completely regular reproducing kernel Hilbert
spaces on high dimensional spaces.
Proposition. If Xi, i = 1, 2 . . . d, are sets and HKi are completely regular reproducing kernel
Hilbert spaces on Xi for all i = 1, 2 . . . d, then HK is completely regular on the product space
X = X1 ×X2 . . . Xd, where K is the product kernel K = K1K2 . . .Kd.

Proof. Each setXi andX are endowed with the metric dK induced by the corresponding kernel. We
claim that in this way X is the topological product of the Xi’s. Indeed, HK = HK1 ⊗ . . . ⊗HKd ,
and, if x = (x1, . . . , xd) ∈ X , then Kx = Kx1 ⊗ . . . ⊗ Kxd . It follows that, if {xi,k}k∈N is a
sequence in Xi such that limk xi,k = xi, then

lim
k
dK ((x1,k, . . . , xd,k), (x1, . . . , xd))

2 = lim
k
‖K(x1,k,...,xd,k) −K(x1,...,xd)‖

2

= lim
k
K(x1,k, x1,k) . . .K(xd,k, xd,k)− 2Re (K(x1,k, x1) . . .K(xd,k, xd))

+K(x1, x1) . . .K(xd, xd)

Since limkK(xi,k, xi,k) = limkK(xi,k, xi) = K(xi, xi), the claim follows.
If C ⊂ X is closed and x = (x1, . . . , xd) ∈ X \ C, let Ui, i = 1, . . . d, be open neighborhoods of
xi in Xi such that U = U1 × . . .× Ud is disjoint from C. Pick fi ∈ HKi such that fi(xi) 6= 0 and
fi|Xi\Ui = 0. Then the product function f(x1, . . . , xd) = f1(x1) . . . fd(xd) is inHK , and satisfies
f(x) 6= 0 and f |C = 0.

We end the section by presenting wo classes of completely regular reproducing kernel Hilbert spaces
with exponential kernels. The first result is about exponential kernels defined by a euclidean metric.
Proposition. Let

K : Rd × Rd → R, K(x, y) = e−α‖x−y‖,

with α > 0. Then K is a positive definite kernel and the corresponding reproducing kernel Hilbert
spaceH is completely regular for all d ∈ N \ {0}.

Proof. Since K is a radial function, its Fourier transform is

K̂(ω) =
2π

‖ω‖ d−2
2

∫ ∞
0

e−αrr
d
2 J d−2

2
(2π‖ω‖r)dr

= 2dπ
d−1
2 αΓ(

d+ 1
2

)
(
α2 + 4π2‖ω2‖

)− d+1
2 , (4)

where Jn is the Bessel function of order n, Γ is Euler gamma function, and we used formula 6.623(2)
p. 712 in [3] to evaluate the integral. The claim then follows from the above Theorem.

Eqs. (4) shows that (up to a constant rescaling of norms)

H = W
d+1
2 (Rd),

where W s is the Sobolev space of order s.

Finally, we consider the exponential kernel defined by the `1-norm, that is

K(x, y) = e−α‖x−y‖1 ‖(x1, x2 . . . xd)‖1 = |x1|+ |x2|+ . . .+ |xd|.

For d = 1, the last proposition shows that HK is completely regular. The same is true for arbitrary
d ≥ 2 as a consequence of the previous results.
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