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Abstract

We consider the problem of retrieving the database poirgsaséto a givehyper-
planequery without exhaustively scanning the database. We gepe hashing-
based solutions. Our first approach maps the data to twohtiry keys that
are locality-sensitive for the angle between the hypemlzarmal and a database
point. Our second approach embeds the data into a vectoe syfaere the Eu-
clidean norm reflects the desired distance between thenatigbints and hyper-
plane query. Both use hashing to retrieve near points inlisebs time. Our
first method’s preprocessing stage is more efficient, whieesecond has stronger
accuracy guarantees. We apply both to pool-based activeinga taking the
current hyperplane classifier as a query, our algorithmtifies those points (ap-
proximately) satisfying the well-known minimal distantehyperplane selection
criterion. We empirically demonstrate our methods’ trédffe@nd show that they
make it practical to perform active selection with millioofsunlabeled points.

1 Introduction

Efficient similarity search with large databases is cernttvahany applications of interest, such as
example-based learning algorithms, content-based imagedio retrieval, and quantization-based
data compression. Often the search problem is considertttidomain ofpoint data: given a
database of vectors listing some attributes of the datectshjevhich points are nearest to a novel
query vector? Existing algorithms provide efficient datacures for point-to-point retrieval tasks
with various useful distance functions, producing eithexat or approximate near neighbors while
forgoing a brute force scan through all database items,[&,&, 3, 4, 5, 6, 7].

By comparison, much less work considers how to efficientlydia instances more complex than
points. In particular, little previous work addresses lilgperplane-to-poinsearch problem: given
a database of points, which are nearest to a novel hyperplaery? This problem is critical to
pool-based active learning, where the goal is to requestddior those points that appear most
informative. The widely used margin-based selectiongateof [8, 9, 10] seeks those points that are
nearest to the current support vector machine’s hypermglansion boundary, and can substantially
reduce total human annotation effort. However, for largales active learning, it is impractical to
exhaustively apply the classifier to all unlabeled pointsaath round of learning; to exploit massive
unlabeled pools, a fast (sub-linear time) hyperplane se@method is needed.



To this end, we propose two solutions for approximate hylpegsto-point search. For each, we

introduce randomized hash functions that offer query tisudslinear in the size of the database, and
provide bounds for the approximation error of the neighlvetdeved. Our first approach devises

a two-bit hash function that is locality-sensitive for thegke between the hyperplane normal and a
database point. Our second approach embeds the inputshstithd Euclidean distance reflects the
hyperplane distance, thereby making them searchable wistirey approximate nearest neighbor

algorithms for vector data. While the preprocessing in ost firethod is more efficient, our second

method has stronger accuracy guarantees.

We demonstrate our algorithms’ significant practical impfac large-scale active learning with
SVM classifiers. Our results show that our method helps sgalactive learning for realistic prob-
lems with massive unlabeled pools on the order of millionexamples.

2 Related Work

We briefly review related work on approximate similarity s#a subspace search methods, and
pool-based active learning.

Approximate near-neighbor search.For low-dimensional points, spatial decomposition and-tre
based search algorithms can provide the exact neighborsbitireear time [1, 2]. While such
methods break down for high-dimensional data, a numbeppfoximatenear neighbor methods
have been proposed that work well with high-dimensionalifaplL ocality-sensitive hashing (LSH)
methods devise randomized hash functions that map sindlatsto the same hash buckets, so that
only a subset of the database must be searched after hastonglajuery [3, 4, 5]. A related family
of methods design Hamming space embeddings that can beetha@dficiently (e.g., [11, 12, 6]).
However, in contrast to our approach, all such techniqueswended for vector/point data.

A few researchers have recently examined approximatefsésks involving subspaces. In[13], a
Euclidean embedding is developed such that the norm in theedding space directly reflects the
principal angle-based distance between the original audesp After this mapping, one can apply
existing approximate near-neighbor methods designeddmtp(e.g., LSH). We provide a related
embedding to find the points nearest to the hyperplane; hemviemcontrast to [13], we provide LSH
bounds, and our embedding is more compact due to our progasgaling strategy. Another method
to find the nearest subspace for a point query is given in fhéligh it is limited to relatively low-

dimensional data due to its preprocessing time/spacersqgant ofO(Nd2 log Ny and query time
of O(d'°log N), whereN is the number of database points ahis the dimensionality of the data.
Further, unlike [13], that approach is restricted to pountiges. Finally, a sub-linear time method to
map aline query to its nearest points is derived in [15]. In contrastltthe above work, we propose
specialized methods for the hyperplane search problenstaowl that they handle high-dimensional
data and large databases very efficiently.

Margin-based active learning.Existing active classifier learning methods famol-basedselection
generally scan all database instances before selectirghidhave labeled nextOne well-known
and effective active selection criterion for support vectachines (SVMs) is to choose points that
are nearest to the current separating hyperplane [8, 9 V¥Bjle simple, this criterion is intuitive,
has theoretical basis in terms of rapidly reducing the wersipace [8], and thus is widely used
in practice (e.g., [17, 18, 19]). Unfortunately, even foexpensive selection functions, very large
unlabeled datasets make the cost of exhaustively seartténgool impractical. Researchers have
previously attempted to cope with this issue by clusterintaodomly downsampling the pool [19,
20, 21, 22]; however, such strategies provide no guaraatetsthe potential loss in active selection
quality. In contrast, when applying our approach for thgktave can consider orders of magnitude
fewer points when making the next active label request, yatantee selections within a known
error of the traditional exhaustive pool-based technique.

Other forms of approximate SVM training. To avoid potential confusion, we note that our prob-
lem setting differs from both that considered in [23], wheognputational geometry insights are
combined with the QP formulation for more efficient “core i@t SVM training, as well as that
considered in [19], where a subseti@beleddata points are selected for online LASVM training.

"We consider only a specific hyperplane criterion in this paper; see ¢t 8 active learning survey.



3 Approach

We consider the following retrieval problem. Given a datg#® = [z1,...,xy] of N points in
R?, the goal is to retrieve the points from the database thatlasest to a givehyperplanequery
whose normal is given by € R¢. We call this thenearest neighbor to a query hyperplafidNQH)
problem. Without loss of generality, we assume that the Iptpee passes through origin, and that
eachz;, w is unit norm. We see in later sections that these assumplimnst affect our solution.

The Euclidean distance of a pointto a given hyperplang,,, parameterized by normab is:
d(hw, ) = [|(z" w)w| = |27 w|. )

Thus, the goal for the NNQH problem is to identify those psint € D that minimize|z? w|. Note
that this is in contrast to traditional proximity problenesg., nearest or farthest neighbor retrieval,
where the goal is tanaximizex” w or —z”w, respectively. Hence, existing approaches are not
directly applicable to this problem.

We formulate two algorithms for NNQH. Our first approach mé#pes data to binary keys that are
locality-sensitive for the angle between the hyperplanenad and a database point, thereby per-
mitting sub-linear time retrieval with hashing. Our secapgproach computes a sparse Euclidean
embedding for the query hyperplane that maps the desiredhstesk to one handled well by exist-
ing approximate nearest-point methods.

In the following, we first provide necessary background arality-sensitive hashing (LSH). The
subsequent two sections describe each approach in turr§esB.4 reviews their trade-offs. Fi-
nally, in Sec. 3.5, we explain how either method can be agpddarge-scale active learning.

3.1 Background: Locality-Sensitive Hashing (LSH)

Informally, LSH [3] requires randomized hash functions gumeeing that the probability of colli-
sion of two vectors is inversely proportional to their “diste”, where “distance” is defined accord-
ing to the task at hand. Since similar points are assuredgy.to fall into the same hash bucket,
one need only search those database items with which a neegl gollides in the hash table.

Formally, letd(-,-) be a distance function over items from a setand for any itenmp € S, let
B(p,r) denote the set of examples frastwithin radiusr from p.

Definition 3.1. [3] Let i, denote a random choice of a hash function from the fafdil{r he family
H is called(r, (1 + ¢€), p1, p2) —sensitive forl(-, -) when, for any,p € S,

e if p € B(q,r) thenPr[hy(q) = hx(p)] > p1,
e if p ¢ B(q,r(1 +¢)) thenPr[hy(q) = hy(p)] < po.

For a family of functions to be useful, it must satigly > ps. A k-bit LSH function com-
putes a hash “key” by concatenating the bits returned by domnsampling ofH: g(p) =

[h%)(p), hgf)(p), e hgf) (p)} . Note that the probability of collision for close points gt at least

p¥, while for dissimilar points it is at mogt;. During a preprocessing stage, all database points are
mapped to a series dhash tables indexed by independently construgted. ., g;, where eacly;

is ak-bit function. Then, given a query, an exhaustive search is carried out only on those examples
in the union of theé buckets to whicly hashes. These candidates containthe)-nearest neighbors
(NN) for ¢, meaning ifg has a neighbor within radius then with high probability some example
within radiusr(1 + ¢) is found.

In [3] an LSH scheme using projections onto single coordisig& shown to be locality-sensitive for

the Hamming distance over vectors. For that hash function, %ggpl < % and using = N”*
g P2 +e

hash tables, @l +¢)-approximate solution can be retrieved in tim(aNuif) ). Related formulations
and LSH functions for other distances have been explored, (&, 4, 24]). Our contribution is to
define two locality-sensitive hash functions for the NNQldlgem.




3.2 Hyperplane Hashing based on Angle Distance (H-Hash)

Recall that we want to retrieve the database vectae(8r which |w”'z| is minimized. If the
vectors are unit norm, then this means that for the “goodidg) database vectors, andx are
almost perpendicular. L&, ., denote the angle betweanandw. We define the distanc:, -) in
Definition 3.1 to reflect how far from perpendicularandx are:

do(, w) = (02w — 7/2)°. @)
Consider the following two-bit function that maps two inpetctorsa, b € R to {0, 1}:

hu,o(a,b) = [hu(a), hy(b)] = [sign(u” a), sign(v"b)], ®)

whereh,(a) = signu’a) returnsl if u”a > 0, and 0 otherwise, ang andv are sampled
independently from a standasedimensional Gaussian, i.at, v ~ N (0, ).

We define ouhyperplane hash(H-Hash) function familyH as:
) = {

haw(z, 2), if z is a database point vector,
huww(z,—2), If zisaquery hyperplane vector.

Next, we prove that this family of hash functions is locaknsitive (Definition 3.1).
Claim 3.2. The familyH is (r,r(1+e€), — %r, 2 — Lr(1+¢))-sensitive for the distance
do(-,-), wherer,e > 0.

Proof. Since the vectors, v used by hash function,, ,, are sampled independently, then for a
query hyperplane vectap and a database point vecter

Pr[hyn(w) = hypg(x)] = Prlhy(w) = hy () andh, (—w) = hy(x)],
= Pr[hy(w) = hy ()] Prlhy(-w) = hy(z)]. (4)
Next, we use the following fact proven in [25],

Prisignu’a) = signu’c)] =1 — 9‘;’6, (5)

whereu is sampled as defined above, @hd. denotes the angle between the two vectoendc.
Using (4) and (5), we get:

Prlhy(w) = hy(x)] = Vo (1 - 9ww> o1 (Hm’w - I)2.

s s

Hence, wher(60,., — g)Q < r, Prlag(w) = hy(x)] > 1 — 2 = py. Similarly, for anye > 0
such that(em,w - g)Q > 7(1 + 6), PI‘[}LH(U}) = hH(a:)] S % — T(}TJZFE) = po. O

We note that unlike traditional LSH functions, ours are asygtric. That is, to hash a database point
x wWe useh,, ,(x, ), whereas to hash a query hyperplanewe use,, ,, (w, —w). The purpose of
the two-bit hash is to constrain the angle with respect th loand —w, so that we do not simply
retrieve examples for which we know only theis 7/2 or lessaway fromw.

With these functions in hand, we can now form hash keys byaenatingt two-bit pairs fromk
hash functions froni, store the database points in the hash tables, and querawitivel hyper-
plane to retrieve its closest points (see Sec. 3.1).

The approximation guarantees and correctness of this schambe obtained by adapting the proof
of Theorem 1 in [3] (see supplementary file). In particulag, ean show that with high probability,
our LSH scheme will return a point within a distande+ ¢)r, wherer = min, dg(x;, w), in time

O(N?), wherep = }gggi. As p; > po, we havep < 1, i.e., the approach takes sub-linear time

for all values ofr, e. Furthermore, ap, = i — 23, andpy = i - ’”(}f), p can also be bounded
1—-log(1—45 . . . -
asp < %. Note that this bound fop is dependent omn, and is more efficient for larger
2
1+% log 4

values ofr. See the supplementary material for more discussion ondhec



3.3 Embedded Hyperplane Hashing based on Euclidean DistaadEH-Hash)

Our second approach for the NNQH problem relies on a Eugiliédgabedding for the hyperplane
and points. It offers stronger bounds than the above, biieagxpense of more preprocessing.

Given ad-dimensional vectow, we compute an embedding inspired by [13] that yieldd’a
dimensional vector by vectorizing the corresponding ramkatrix aa”:
V(a) = vec(aa®) = [a%, aiay, ..., G104, 43, G203, ..., afl] , (6)

wherea; denotes theé-th element ofa. Assuminga andb to be unit vectors, the Euclidean distance
between the embeddinds$(a) and —V (b) is given by||V(a) — (=V(b))||*> = 2 + 2(a”b)?.
Hence, minimizing the distance between the two embeddmgsjilivalent to minimizinda” b,
our intended function.

Given this, we define oumbedding-hyperplane hasiEH-Hash) function famil\¢ as:
he (2) = {hu (V(2)), ?f z is a database point vector,
ha (=V(2)), if zisaquery hyperplane vector,
whereh,,(z) = sign(u’ z) is a one-bit hash function parameterizechby- N (0, I).
Claim 3.3. The family of functions & defined above is
(n r(1+e€), Lcos™lsin®(v/7), Lcos™tsin®(y/r(1+ e)))—sensitive fory(-,-), wherer,e > 0.

oo

Proof. Using the result of [25], for any vectav, x € Rd,
—V(w V(x

Pr [sign(u” (-V(w))) = sign(u"V(z))] =1 - %COS_I (HV(w)HV(m)H

whereu € R” is sampled from a standar#-variate Gaussian distributiom, ~ A(0, ). Note
that for any unit vectora, b € RY, V(a)TV (b) = Tr(aa”bb”) = (a7b)? = cos2 04 p.

Using (7) together with the definition @fs above, given a hyperplane quesyand database point
x we have:

Prlhe (w) = he(x)] =1 — %cosf1 (—co8®(Opw)) = cos™" (cos®(Ogw)) /7 (8)
Hence, wher{f, ., — 5)* <,

Prfhe(w) = he(w)] >~ cos™ sin’(VP) = pu, ©)

andp, is obtained similarly. O

We observe that thig; behaves similarly td(Z — 73). Thatis, as- varies, EH-Hash’'g, returns

values close to twice those returned by H-Hagh $see plot illustrating this in supplementary file).
Hence, the factop = 1222 improves upon that of the previous section, remaining Ideetower

values ofe, and leading to better approximation guarantees. Seeemppkary material for a more
detailed comparison of the two bounds.

On the other hand, EH-Hash’s hash functions are signifizantire expensive to compute. Specif-
ically, it requiresO(d?) time, whereas H-Hash requires orf}(d). To alleviate this problem, we
use a form of randomized sampling when computing the hasHdrita query that reduces the time
to O(1/¢'%), for ¢ > 0. Our method relies on the following lemma, which states saahpling a
vectorv according to the weights of each element leads to good ajspation tov” y for any vec-
tor y (with constant probability). Similar sampling schemesehbeen used for a variety of matrix
approximation problems (see [26]).

Lemma 3.4. Letv € R? and define; = v?/||v||%. Constructs € R? such that the-th element is
v; with probabilitypz and is0O otherwise. Seleo‘itsuch elements using sampling with replacement.
Then, forany € R?, e > 0,¢>1,t > 2

i 1
Prjo"y — v y| < €|vl? ||yl > 1 - - (10)



We defer the proof to the supplementary material. The lemmpiés that at query time our hash
functionhg (w) can be computed while incurring a small additive error ina'm(e%), by sampling
its embeddind/ (w) accordingly, and then cycling through only the non-zerddes of V' (w) to
computeu” (—V (w)). Note that we can substantially reduce the error in the hasttibn compu-
tation by samplingO(e%) elements of the vectaw and then using ac(ww?”) as the embedding

for w. However, in this case, the computational requirementgase t(D(E%).

While one could alternatively use the Johnson-Lindensgrélis) lemma to reduce the dimension-
ality of the embedding with random projections, doing sotasmajor difficulties: first, thel — 1
dimensionality of a subspace represented by a hyperplaplemihe random projection dimension-
ality must still be large for the JL-lemma to hold, and secdhd projection dimension is dependent
on the sum of the number of database poamtd query hyperplanes. The latter is problematic when
fielding an arbitrary number of queries over time or storiggaving database of points—both prop-
erties that are intrinsic to our target active learning eggpion. In contrast, our sampling method is
instance-dependent and incurs very little overhead forpeding the hash function.

Comparison to [13]. Basri et al. define embeddings for finding nearest subspaggdh particular,
they define Euclidean embeddings for affine subspace queneslatabase points which could be
used for NNQH, although they do not specifically apply it tgpagplane-to-point search in their
work. Also, their embedding is not tied to LSH bounds in teohthe distance function (2), as we
have shown above. Finally, our proposed instance-speaifipbng strategy offers a more compact
representation with the advantages discussed above.

3.4 Recap of the Hashing Approaches

To summarize, we presented two locality-sensitive hashppyoaches for the NNQH problem. Our
first H-Hash approach defines locality-sensitivity in thatext of NNHQ, and then provides suit-
able two-bit hash functions together with a bound on reéliéme. Our second EH-Hash approach
consists of al?-dimensional Euclidean embedding for vectors of dimengidmat in turn reduces
NNHQ to the Euclidean space nearest neighbor problem, fachwéfficient search structures (in-
cluding LSH) are available. While EH-Hash has better bouhda H-Hash, its hash functions are
more expensive. To mitigate the expense for high-dimeasidata, we use a well-justified heuristic
where we randomly sample the given query embedding, reduabaquery time to linear id.

Note that both of our approaches attempt to minimizéw, «) between the retrieved and the
hyperplanew. Since that distance is only dependent ondhglebetweenr andw, any scaling of
the vectors do not effect our methods, and we can safelytlregtrovided vectors to be unit norm.

3.5 Application to Large-Scale Active Learning

The search algorithms introduced above can be applied fpitask fitting their query/database
specifications. We are especially interested in their ezlee for making active learning scalable.

A practical paradox with pool-based active learning aldponis is that their intended value—to re-
duce learning time by choosing informative examples tollfitst—conflicts with the real expense
of applying them to very large “unprepared” unlabeled detasGenerally methods today are tested
in somewhat canned scenarios: the implementor has a meljeseted labeled dataset, and simply
withholds the labels from the learner until a given pointetested, at which point the “oracle” re-
veals the label. In reality, one would like to deploy an aztiarner on a massiteuly unlabeled
data pool (e.g., all documents on the Web) and let it crawtHerinstances that appear most valuable
for the target classification task. The problem is that a s¢amillions of points is rather expensive
to compute exhaustively, and thus defeats the purpose @birimg overall learning efficiency.

Our algorithms make it possible to benefit frdmth massive unlabeled collections as well as
actively chosen label requests. We consider the “simplegimaselection criterion for linear
SVM classifiers [8, 9, 10]. Given a hyperplane classifier andualabeled pool of vector data
U = {x1,...,zN}, the point that minimizes the distance to the current degisioundary is se-
lected for labeling:xz* = argmin,, ., |lwTx;|. Our two NNQH solutions supply exactly the hash
functions needed to rapidly identify the next point to latiest we hash the unlabeled database into
tables, and then at each active learning loop, we hash thentulassifienw as a query.

>The SVM bias term is handled by appending points with Alote, our approach assumes linear kernels.
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Figure 2: CIFAR-10 results. (a)-(c)Plotted as in above figure. Our methods compare very well with the
significantly more expensive exhaustive baseline. Our EH-Hashd@®wmore accurate selection than our
H-Hash (see (c)), though requires noticeably more query time (3ge (b

4 Results

We demonstrate our approach applied to large-scale aetivaihg tasks. We compare our methods
(H-Hash in Sec. 3.2 and EH-Hash in Sec. 3.3) to two baselihegassive learning, where the next
label request is randomly selected, and 2) exhaustiveeastiection, where the margin criterion
in (1) is computed over all unlabeled examples in order to firetrue minimum. The main goal
is to show our algorithms can retrieve examples nearly akasg¢he exhaustive approach, but with
substantially greater efficiency.

Datasets and implementation detailsWe use three publicly available datase?§. Newsgroups
consists of 20,000 documents from 20 newsgroup categadilesise the provided 61,11Bbag-of-
words features, and a test set of 7,5G8-AR-10 [27] consists of 60,000 images from 10 categories.
It is a manually labeled subset of the 80 Million Tiny Imageadt [28], which was formed by
searching the Web for all English nouns and lacks ground taltels. We use the provided train and
test splits of 5@ and 105 images, respectivelyliny-1M consists of the first 1,000,000 (unlabeled)
images from [28]. For both CIFAR-10 and Tiny-1M, we use thevisled 3844 GIST descriptors as
features. For all datasets, we train a linear SVM in the asr@lvsetting using a randomly selected
labeled set (5 examples per class), and then run activetisgléar 300 iterations. We average results
across five such runs. We fix= 300, N? = 500, ¢ = 0.01.

Newsgroups documents resultsFigure 1 shows the results on the 20 Newsgroups, startirty wit
the learning curves for all four approaches (a). The actgerlers (exact and approximate) have the
steepest curves, indicating that they are learning moeetftly from the chosen labels compared
to the random baseline. Both of our hashing methods perfomitesly to the exhaustive selection,
yet require scanning an order of magnitude fewer exampledNote, Random requires 0 time.

Fig. 1(c) shows the actual values|af” x| for the selected examples over all iterations, categories,
and runs; in line with our methods’ guarantees, they seletttp close to those found with ex-
haustive search. We also observe the expected trade-dffagtt-is more efficient, while EH-Hash
provides better results (only slightly better for this simatiataset).

CIFAR-10 tiny image results. Figure 2 shows the same set of results on the CIFAR-10. Thddre
are mostly similar to the above, although the learning taskare difficult on this data, narrowing the
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Figure 4: Tiny-1M results. (a) Error of examples selectedb) Time required.(c) Examples selected by
EH-Hash among 1M candidates in the first nine iterations when learningitpa®e and Automobile classes.

margin between active and random. Averaged over all clagsekappen to outperform exhaustive
selection (Fig. 2(a)); this can happen since there is noaguiee that the best active choice will help
test accuracy, and it also reflects the wider variation aques-class results. The boxplots in (c) more
directly show the hashing methods are behaving as expdstetl.(b) and (c) illustrate their trade-
offs: EH-Hash has stronger guarantees than H-Hash (andelmiesves lowerv™ z values), but is
more expensive. Figure 3(a) shows example image sele&suits; both exhaustive search and our
hashing methods manage to choose images useful for leabhng airplanes/non-airplanes.

Figure 3(b) shows the prediction accuracy plotted agahestdtal time taken per iteration, which
includes bothselectionandlabelingtime, for both datasets. We set the labeling time per ingtanc
to 1 and5 seconds for the Newsgroups and Tiny image datasets, ragdgc{Note, however, that
these could vary in practice depending on the difficulty @ iihstance.) These results best show
the advantage of our approximate methods: accounting fibr types of cost inherent to training
the classifier, they outperform both exhaustive and randegecson in terms of the accuracy gains
per unit time. While exhaustive active selection suffersabse of its largeselectiontime, random
selection suffers because it wastes expenlsivelingtime on irrelevant examples. Our algorithms
provide the best accuracy gains by minimizing both seladiad labeling time.

Tiny-1M results. Finally, to demonstrate the practical capability of our éygane hashing ap-
proach, we perform active selection on the one million timage set. We initialize the classifier
with 50 examples from CIFAR-10. The 1M set lacks any labelakimg this a “live” test of active
learning (we ourselves annotated whatever the methodstedje We use our EH-Hash method,
since it offers stronger performance.

Even on this massive collection, our method’s selectiorsvary similar in quality to the exhaus-
tive method (see Fig. 4(a)), yet require orders of magnitagde time (b). The images (c) show the
selections made from this large pool during the “live” labgltest; among all one million unla-
beled examples (nearly all of which likely belong to one & tither 1000s oflasse¥ our method
retrieves seemingly relevant instances. To our knowletlgs,experiment exceeds any previous
active selection results in the literature in terms of tredesof the unlabeled pool.

Conclusions. We introduced two methods for the NNQH search problem. Betimit efficient
large-scale search for points near to a hyperplane, andrimgrgs with three datasets clearly
demonstrate the practical value for active learning witlsshee unlabeled pools. For future work,
we plan to further explore more accurate hash-functionsfioH-hash scheme and also investigate
sublinear time methods for non-linear kernel based actiaening.

This work is supported in part by DARPA CSSG, NSF EIA-030360& the Luce Foundation.
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