
Appendix

A.1. Variational Inference

In both the variational prediction rule (5) and the parameter estimation, for each document we need
to infer the variational distribution qs(ψ, o) for each category s. This can be efficiently done by
using the mean field method. Specifically, we assume

qs(ψ, o) = q(ψ|νs, diag(τ2
s ))

∏

n

q(on|ϕn),

where q(ψ|νs, diag(τ2
s )) = N (νs, diag(τ2

s )), and q(on|ϕsn) is a multinomial distribution with pa-
rameter ϕsn. Then, we have the variational lower bound

L−θ(qs,Θ) = E[log p(ψ|µs,Σs)] +
∑

n

E[log p(on|ψ) + log p(rn|on, β) + log p(xn|on, η)] −H(q),

where all the terms except the second one can be efficiently computed. Similar as in CTMs [3], we
need to further approximate the second term as5

E[log p(on|ψ)] ≥
∑

k

ϕnkνsk −
∑
k exp(νsk + 1

2
τ2
sk)

ζs
+ 1 − log ζs

where ζs is an additional variational parameter. Now, posterior inference is to find a q that maximizes
the lower bound L−θ, whose second term is approximated with the above inequality.

The first term of L−θ is E[log p(ψ|µs,Σs)], and it can be computed similarly as in the CTM
model [3]. The last two terms of L−θ are E[log p(rn|on, β)] =

∑
m

∑
k ϕsnk log βmkrnm and

E[log p(xn|on, η)] =
∑
m

∑
k ϕsnk log ηkxnm .

For each document, optimize L−θ over ϕnk and we can get

ϕsnk ∝ exp
(
νsk +

∑

m

log βmkrnm +
∑

m

log ηkxnm

)
.

For the parameters νs and τ2
s , we do not have a closed form solution. Thus we apply gradient descent

methods. Instead of optimizing over the positivity-constrained τ2
s , we perform the optimization in

the log-space. Here, we use the L-BFGS method [15] to optimize over µ and log τ2 jointly, which
is much faster than the coordinate-wise Newton method [3]. The gradients of νs and τ2

s are

∇νsL= −Σ−1
s (νs − µs) +

∑
n ϕn − N

ζs
exp(νs + 1

2
τ2
s )

∇τ2
sk
L= 1

2τ2
sk

− Σ−1
skk
2

− N
2ζs

exp(νsk + 1
2
τ2
sk).

For the variational parameter ζ, the optimum solution is ζs =
∑
k exp(νsk + 1

2τ
2
sk).

A.2. Estimating Gaussian and Multinormial Parameters

For the parameters (µ,Σ, β, η), the optimal solution is achieved by solving the sub-problem

min
µ,Σ,β,η

∑

d

max
s

[−θ⊤∆fd(s) + ∆ℓd(s) + L−θ(q
⋆
s )] − (

λ

C
+ 1)

∑

d

L−θ(q
⋆
sd

).

By using the loss-augmented prediction ŝd , arg maxs θ
⊤f(gd, s) + ∆ℓd(s) + L−θ(q⋆s ) to replace

the maximum operator, this problem has closed-form solutions. For µ and Σ, the solutions are

µs =
(1 + λ

C
)
∑
d I(sd=s)νs − ∑

d I(ŝd=s)νs

(1 + λ
C

)Ns − N̂s
, Σs =

(1 + λ
C

)
∑
d I(sd=s)(Λ + Cs) − ∑

d I(ŝd=s)(Λ + Cs)
(1 + λ

C
)Ns − N̂s

,

where I is an indicator function; Ns =
∑
d I(sd=s) is the number of training examples that are in

category s; N̂s =
∑
d I(ŝd=s) is the number of training data that are predicted to be in category s;

Λ = diag(τ2
s ); and Cs = (νs − µs)(νs − µs)

⊤. Although in principle the covariance matrix can
be non-positive semidefinite, in practice this can be avoided by choosing a large enough λ, which is
much larger than C. For β and η, the optimal solutions are

βmkr ∝
∑

d

∑

s

(I(s=sd) + (1 +
λ

C
)I(s=ŝ))

∑

n

ϕdsnkI(rdnm=r)

ηkx ∝
∑

d

∑

s

(I(s=sd) + (1 +
λ

C
)I(s=ŝ))

∑

nm

ϕdsnkI(xdnm=x).

5By the inequality: log x ≤ a−1x− 1 + log a, ∀a > 0, where the equality holds when a = x.
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Table 3: Annotation accuracy of several example objects detected in the sports dataset.

athlete grass tree horse water floor rock

Object-Level
P 0.369 0.397 0.510 0.394 0.447 0.251 0.266
R 0.528 0.243 0.512 0.238 0.427 0.370 0.325
F1 0.435 0.301 0.511 0.297 0.437 0.299 0.292

Pixel-Level
P 0.279 0.577 0.631 0.567 0.633 0.343 0.496
R 0.613 0.651 0.688 0.511 0.742 0.629 0.648
F1 0.384 0.612 0.659 0.537 0.683 0.444 0.562
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Figure 6: (Left) object-level; and (Right) pixel-level overall accuracy of object annotation.

A.3. Object Annotation on the Sports Dataset

Although our main goal is to improve the imbalanced prediction rule achieved by MLE for scene
categorization, the joint scene and object model can also be used to annotate objects when human
annotated training examples of objects are available, as explained in Sec. 2.2. For the two datasets,
only the sports dataset [13] contains manually labeled objects. Here, we report some results of
object annotation on the sports dataset by the scene model learned with different methods. For
each object class, we randomly sample 40 percent of the regions in testing images as examples
with labeled objects and use the k-Nearest Neighbor (kNN) to annotate the rest regions based on
the cosine similarity of their latent object representations. We compute two scores: (1) object-level
accuracy–the percentage of correctly annotated objects; and (2) pixel-level accuracy–the percentage
of the area of correctly annotated regions.

Fig. 6 shows the average overall accuracy of object annotation in both object-level and pixel-level,
and Table 3 presents the Precision, Recall and F1 scores for several example objects. Note that
the MLE-Scene-NG model is similar to the spatially coherent latent topic model [6]. For the kNN
algorithm, the optimum parameter k is chosen for each case. From the results, we can see that the
joint scene models learned with partially labeled images can achieve promising results on annotating
some objects, and the max-margin method can result in slightly better performance than the MLE-
based methods. From these results, we can also identify some challenging problems for future
investigation, for example, how to effectively incorporate global features, and how to explore max-
margin learning to improve object annotation accuracy.
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