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Proof of Theorem 1. Let Qi = Si
1 ⊕ Si

2. First we prove that if each view Xv (v = 1, 2) sat-
isfies Tsybakov noise condition, i.e., Prxv∈Xv

(|ϕv(xv) − 1/2| ≤ t) ≤ C3t
λ3 for some finite

C3 > 0, λ3 > 0 and all 0 < t ≤ 1/2, Tsybakov noise condition can also be met in Qi, i.e.,
Prxv∈Qi

(|ϕv(xv)−1/2|≤t)

Pr(Qi)
≤ C4t

λ4 for some finite C4 > 0, λ4 > 0 and all 0 < t ≤ 1/2. Suppose

Tsybakov noise condition cannot be met in Qi, then for C∗ = C3

Pr(Qi)
and λ∗ = λ3, there exists

some 0 < t∗ ≤ 1/2 to satisfy that
Prxv∈Qi

(|ϕv(xv)−1/2|≤t)

Pr(Qi)
> C∗t

λ∗

∗ . So we get

Prxv∈Xv
(|ϕv(xv) − 1/2| ≤ t) ≥ Prxv∈Qi

(|ϕv(xv) − 1/2| ≤ t) > C3t
λ3

∗ .

It is in contradiction with that Xv satisfies Tsybakov noise condition. Thus, we get that Tsybakov
noise condition can also be met in Qi. Without loss of generality, suppose that Tsybakov noise
condition in all Qi and Xv can be met for the same finite C0 and λ.

Since m0 = 256kC
C2

1

(
V + log(16(s+1)

δ )
)
, according to Lemma 1 we know that d(S0

v , S∗) ≤ C1

16k with

probability at least 1 − δ
16(s+1) . With d(Sv, S∗

v ) ≥ C1d
k
∆(Sv, S∗

v ), we get d∆(S0
v , S∗) ≤ 1

16 . It is

easy to find that d∆(S0
1 ∩ S0

2 , S∗) ≤ d∆(S0
1 , S∗) + d∆(S0

2 , S∗) ≤ 1/8 holds with probability at

least 1 − δ
8(s+1) .

For i ≥ 0, mi+1 number of labels are queried randomly from Qi. Thus, similarly according to

Lemma 1 we have d∆(Si+1
1 ∩ Si+1

2 | Qi, S
∗ | Qi) ≤ 1/8 with probability at least 1 − δ

8(s+1) . Let

T i+1
v = Si+1

v ∩ Qi and τi+1 =
Pr(T i+1

1
⊕T i+1

2
−S∗)

Pr(T i+1

1
⊕T i+1

2
)

− 1
2 , it is easy to get

Pr
(
S∗ ∩ (Si+1

1 ⊕ Si+1
2 )|Qi

)
− Pr

(
S∗ ∩ (Si+1

1 ⊕ Si+1
2 )|Qi

)
= −2τi+1Pr(Si+1

1 ⊕ Si+1
2 |Qi).

Considering the non-degradation condition and d∆(Si
1 ∩ Si

2|Qi, S
∗|Qi) = d∆(Si

v|Qi, S
∗|Qi), we

calculate that

d∆(Si+1
1 ∩ Si+1

2 |Qi, S
∗|Qi)

=
1

2

(
d∆(Si+1

1 |Qi, S
∗|Qi) + d∆(Si+1

2 |Qi, S
∗|Qi)

)
+

1

2
Pr

(
S∗ ∩ (Si+1

1 ⊕ Si+1
2 )|Qi

)

−
1

2
Pr

(
S∗ ∩ (Si+1

1 ⊕ Si+1
2 )|Qi

)

≤
1

2

(
d∆(Si

1|Qi, S
∗|Qi) + d∆(Si

2|Qi, S
∗|Qi)

)
− τi+1Pr(Si+1

1 ⊕ Si+1
2 |Qi)

= d∆(Si
1 ∩ Si

2|Qi, S
∗|Qi) − τi+1Pr(Si+1

1 ⊕ Si+1
2 |Qi).

So we have

d∆(Si+1
1 ∩ Si+1

2 , S∗)

= d∆(Si+1
1 ∩ Si+1

2 |Qi, S
∗|Qi)Pr(Qi) + d∆(Si+1

1 ∩ Si+1
2 |Qi, S

∗|Qi)Pr(Qi)

≤
1

8
Pr(Qi) + d∆(Si

1 ∩ Si
2|Qi, S

∗|Qi)Pr(Qi) − τi+1Pr
(
(Si+1

1 ⊕ Si+1
2 ) ∩ Qi

)
.
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Considering d∆(Si
1 ∩ Si

2|Qi, S
∗|Qi)Pr(Qi) = Pr(Si

1 ∩ Si
2 − S∗) + Pr(Si

1 ∩ Si
2 − S∗), we have

d∆(Si+1
1 ∩ Si+1

2 , S∗)

≤ Pr(Si
1 ∩ Si

2 − S∗) + Pr(Si
1 ∩ Si

2 − S∗) +
1

8
Pr(Si

1 ⊕ Si
2) − τi+1Pr

(
(Si+1

1 ⊕ Si+1
2 ) ∩ Qi

)
.

Similarly, we get

d∆(Si+1
1 ∪ Si+1

2 , S∗)

≤ Pr(Si
1 ∩ Si

2 − S∗) + Pr(Si
1 ∩ Si

2 − S∗) +
1

8
Pr(Si

1 ⊕ Si
2) + τi+1Pr

(
(Si+1

1 ⊕ Si+1
2 ) ∩ Qi

)
.

Let γi =
Pr(Si

1⊕Si
2−S∗)

Pr(Si
1
⊕Si

2
)

− 1
2 , we have

d∆(Si
1 ∩ Si

2, S
∗) = d∆(Si

1 ∩ Si
2|Qi, S

∗|Qi)Pr(Qi) + d∆(Si
1 ∩ Si

2|Qi, S
∗|Qi)Pr(Qi)

= (1/2 − γi)Pr(Si
1 ⊕ Si

2) + Pr(Si
1 ∩ Si

2 − S∗) + Pr(Si
1 ∩ Si

2 − S∗)

and d∆(Si
1 ∪ Si

2, S
∗) = (1/2 + γi)Pr(Si

1 ⊕ Si
2) + Pr(Si

1 ∩ Si
2 − S∗) + Pr(Si

1 ∩ Si
2 − S∗).

As in each round of the multi-view active learning some contention points of the two views are
queried and added into the training set, the difference between the two views is decreasing, i.e.,

Pr(Si+1
1 ⊕ Si+1

2 ) is no larger than Pr(Si
1 ⊕ Si

2).

Case 1: If |τi+1| ≤ γi, with respect to Definition 1, we have

d∆(Si+1
1 ∪ Si+1

2 , S∗)

d∆(Si
1 ∪ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + |τi+1|Pr(Si+1

1 ⊕ Si+1
2 ) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + γi)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
( 1
8 + γi)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + γi)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)
≤

5α + 8

8α + 8
;

Case 2: If −|τi+1| > γi, with respect to Definition 1, we have

d∆(Si+1
1 ∩ Si+1

2 , S∗)

d∆(Si
1 ∩ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + |τi+1|Pr(Si+1

1 ⊕ Si+1
2 ) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + |γi|)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
5α + 8

8α + 8
;

Case 3: If τi+1 ≥ γi and 0 ≤ γi ≤
1
4 , with respect to Definition 1, we have

d∆(Si+1
1 ∩ Si+1

2 , S∗)

d∆(Si
1 ∩ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 − γi)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
α + 8

2α + 8
;

Case 4: If τi+1 ≥ γi and 1
4 < γi ≤

1
2 , with respect to Definition 1, we have

d∆(Si+1
1 ∪ Si+1

2 , S∗)

d∆(Si
1 ∪ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + τi+1Pr(Si+1

1 ⊕ Si+1
2 ) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + γi)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
5α + 8

6α + 8
;

Case 5: If τi+1 < γi and − 1
4 ≤ γi ≤ 0, with respect to Definition 1, we have

d∆(Si+1
1 ∪ Si+1

2 , S∗)

d∆(Si
1 ∪ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + γi)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
α + 8

2α + 8
;
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Case 6: If τi+1 < γi and − 1
2 ≤ γi < − 1

4 , with respect to Definition 1, we have

d∆(Si+1
1 ∩ Si+1

2 , S∗)

d∆(Si
1 ∩ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + |τi+1|Pr(Si+1

1 ⊕ Si+1
2 ) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + |γi|)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
5α + 8

6α + 8
;

Case 7: If τi+1 ≤ −γi and 0 ≤ γi ≤
1
2 , with respect to Definition 1, we have

d∆(Si+1
1 ∪ Si+1

2 , S∗)

d∆(Si
1 ∪ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + γi)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
α + 8

4α + 8
;

Case 8: If τi+1 > −γi and − 1
2 ≤ γi ≤ 0, with respect to Definition 1, we have

d∆(Si+1
1 ∩ Si+1

2 , S∗)

d∆(Si
1 ∩ Si

2, S
∗)

≤
1
8Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

( 1
2 + |γi|)Pr(Si

1 ⊕ Si
2) + 1

αPr(Si
1 ⊕ Si

2)

≤
α + 8

4α + 8
.

Thus, after the (i + 1)-th round, either
d∆(Si+1

1
∩Si+1

2
,S∗)

d∆(Si
1
∩Si

2
,S∗)

≤ 5α+8
6α+8 or

d∆(Si+1

1
∪Si+1

2
,S∗)

d∆(Si
1
∪Si

2
,S∗)

≤ 5α+8
6α+8

holds. Hence, we have d∆(Ss
1 ∩ Ss

2 , S∗) ≤ 1
8

(
5α+8
6α+8

)s/2

or d∆(Ss
1 ∪ Ss

2 , S∗) ≤ 1
8

(
5α+8
6α+8

)s/2

with probability at least 1 − δ. When s = ⌈
2 log 1

8ǫ

log 1
C2

⌉, where C2 = 5α+8
6α+8 is a constant less

than 1, we have either d∆(Ss
1 ∩ Ss

2 , S∗) ≤ ǫ or d∆(Ss
1 ∪ Ss

2 , S∗) ≤ ǫ with probability at least
1 − δ. Thus, considering R(hi

+) − R(S∗) = R(Si
1 ∩ Si

2) − R(S∗) ≤ d∆(Si
1 ∩ Si

2, S
∗) and

R(hi
−) − R(S∗) = R(Si

1 ∪ Si
2) − R(S∗) ≤ d∆(Si

1 ∪ Si
2, S

∗), we have either R(hs
+) ≤ R(S∗) + ǫ

or R(hs
−) ≤ R(S∗) + ǫ. �

Proof of Lemma 2. We apply Ss
1 and Ss

2 to the unlabeled instances set and identify the contention

point set. Then we query for labels of
2 log( 4

δ
)

β2 instances drawn randomly from the contention points

set. With these labels we estimate the empirical value P̂1 of
Pr({x:x∈Ss

1⊕Ss
2∧y(x)=1})

Pr(Ss
1
⊕Ss

2
) and the em-

pirical value P̂2 of
Pr({x:x∈Ss

1⊕Ss
2∧y(x)=0})

Pr(Ss
1
⊕Ss

2
) . By Chernoff bound, with number of

2 log( 4
δ
)

β2 labels we

have the following two equations with probability at least 1 − δ.

P̂1 ∈
[Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)

Pr(Ss
1 ⊕ Ss

2)
−

β

2
,
P r

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)

Pr(Ss
1 ⊕ Ss

2)
+

β

2

]

P̂2 ∈
[Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)

Pr(Ss
1 ⊕ Ss

2)
−

β

2
,
P r

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)

Pr(Ss
1 ⊕ Ss

2)
+

β

2

]

If P̂1 ≤ P̂2, we get Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
≤ Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)

with probability at least 1 − δ; otherwise, we get Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
> Pr

(
{x :

x ∈ Ss
1 ⊕ Ss

2 ∧ y(x) = 0}
)

with probability at least 1 − δ. �

Proof of Theorem 2. According to Theorem 1, by requesting Õ(log 1
ǫ ) labels the multi-view active

learning in Table 1 can get either R(hs
+) ≤ R(S∗) + ǫ or R(hs

−) ≤ R(S∗) + ǫ with probability at

least 1 − δ
2 . According to Lemma 2, by requesting

2 log( 8
δ
)

β2 labels we can decide correctly whether

Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
or Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)
is smaller with

probability at least 1 − δ
2 .

Case 1: If Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
≤ Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)
, we have

R(hs
−) ≤ R(hs

+). Thus, we get R(hs
−) ≤ R(S∗) + ǫ with probability at least 1 − δ.
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Case 2: If Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
> Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)
, we have

R(hs
+) < R(hs

−). Thus, we get R(hs
+) ≤ R(S∗) + ǫ with probability at least 1 − δ.

The total number of labels to be requested is Õ(log 1
ǫ ) +

2 log( 8
δ
)

β2 = Õ(log 1
ǫ ). �

Proof of Theorem 3. Since Pr(Ss
1 ⊕ Ss

2) ≤ 1, with the following equation

∣∣∣
Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)

Pr(Ss
1 ⊕ Ss

2)
−

Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)

Pr(Ss
1 ⊕ Ss

2)

∣∣∣ = O(ǫ)

we have |Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
− Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)
| = O(ǫ). So

it is easy to get |R(hs
+) − R(hs

−)| = O(ǫ). According to Theorem 1, by requesting Õ(log 1
ǫ ) labels

we can get either R(hs
+) ≤ R(S∗) + ǫ or R(hs

−) ≤ R(S∗) + ǫ with probability at least 1− δ. Thus,
we get that hs

+ and hs
− satisfy either (a) or (b) with probability at least 1 − δ. �

Proof of Theorem 5. According to Theorem 4, by requesting Õ(log 1
ǫ ) labels the multi-view active

learning in Table 1 can get either R(hs
+) ≤ R(S∗

1 ∩ S∗
2 ) + ǫ or R(hs

−) ≤ R(S∗
1 ∩ S∗

2 ) + ǫ with

probability at least 1 − δ
2 . According to Lemma 2, by requesting

2 log( 8
δ
)

β2 labels we can decide

correctly whether Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
or Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)
is

smaller with probability at least 1 − δ
2 .

Case 1: If Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
≤ Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)
, we have

R(hs
−) ≤ R(hs

+). Thus, we get R(hs
−) ≤ R(S∗

1 ∩ S∗
2 ) + ǫ with probability at least 1 − δ.

Case 2: If Pr
(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 1}

)
> Pr

(
{x : x ∈ Ss

1 ⊕ Ss
2 ∧ y(x) = 0}

)
, we have

R(hs
+) < R(hs

−). Thus, we get R(hs
+) ≤ R(S∗

1 ∩ S∗
2 ) + ǫ with probability at least 1 − δ.

The total number of labels to be requested is Õ(log 1
ǫ ) +

2 log( 8
δ
)

β2 = Õ(log 1
ǫ ). �

Proof of Corollary 1. According to Theorem 5 we know that by requesting Õ(log 1
ǫ ) labels the

multi-view active learning in Table 1 will generate a classifier whose error rate is no larger than
R(S∗

1 ∩ S∗
2 ) + ǫ

2 with probability at least 1 − δ. Considering that

R(S∗
1 ∩ S∗

2 ) − R(S∗
v ) =

∫

(S∗

1
∩S∗

2
)∆S∗

v

|2ϕv(xv) − 1|pxv
dxv

≤ Pr(S∗
1 ⊕ S∗

2 ),

we have R(S∗
1 ∩S∗

2 ) ≤ R(S∗
v )+ ǫ

2 . Thus, we get that R(S∗
1 ∩S∗

2 )+ ǫ
2 is no larger than R(S∗

v )+ǫ. �

Proof of Theorem 6. After the i-th round in Table 2, the number of training examples in L is∑i
b=0 2bmi = (2i+1 − 1)mi. While in the (i + 1)-th round, we randomly query (2i+1 − 1)mi

labels from the region of Qi and add them into L. So in the (i + 1)-th round, the number of training

examples for Si+1
v (v = 1, 2) drawn randomly from region of Qi is larger than the number of whole

training examples for Si
v . Since the optimal Bayes classifier cv belongs to Hv , according to the

standard PAC-model, it is easy to know that d(Si+1
v |Qi, S

∗|Qi) ≤ d(Si
v|Qi, S

∗|Qi) can be met for

any ϕv , where d(Sv|Qi, S
∗|Qi) is defined as

d(Sv|Qi, S
∗|Qi) , R(Sv|Qi) − R(S∗|Qi) =

∫

(Sv∩Qi)∆(S∗∩Qi)

|2ϕv(xv) − 1|pxv
dxv

/
Pr(Qi).

So, by setting ϕv ∈ {0, 1}, we get d∆(Si+1
v |Qi, S

∗|Qi) ≤ d∆(Si
v|Qi, S

∗|Qi), which implies the
non-degradation condition. Thus, with the proof of Theorem 1, we get Theorem 6 proved. �

Proof of Theorem 7. According to Theorem 6, by requesting Õ( 1
ǫ ) labels the multi-view active

learning in Table 2 will generate two classifiers hs
+ and hs

−, at least one of which is with error rate
no larger than R(S∗) + ǫ with probability at least 1 − δ. Similarly to the proof of Theorem 2, we
get Theorem 7 proved. �

4



Proof of Theorem 8. According to Theorem 6, by requesting Õ( 1
ǫ ) labels the multi-view active

learning in Table 2 will generate two classifiers hs
+ and hs

−, at least one of which is with error rate
no larger than R(S∗) + ǫ with probability at least 1 − δ. Similarly to the proof of Theorem 3, we
get Theorem 8 proved. �

Proof of Theorem 9. Similarly to the proof of Theorem 4 and Theorem 6, we know that by request-

ing Õ( 1
ǫ ) labels the multi-view active learning in Table 2 can get either R(hs

+) ≤ R(S∗
1 ∩ S∗

2 ) + ǫ

or R(hs
−) ≤ R(S∗

1 ∩ S∗
2 ) + ǫ with probability at least 1 − δ

2 . According to Lemma 2, by requesting
2 log( 8

δ
)

β2 labels we can decide correctly whether R(hs
+) or R(hs

−) is smaller with probability at

least 1 − δ
2 . Thus, we can get a classifiers whose error rate is no larger than R(S∗

1 ∩ S∗
2 ) + ǫ with

probability at least 1 − δ. The total number of labels to be requested is Õ( 1
ǫ ) +

2 log( 8
δ
)

β2 = Õ( 1
ǫ ). �

Proof of Corollary 2. According to Theorem 9 we know that by requesting Õ( 1
ǫ ) labels the

multi-view active learning in Table 2 will generate a classifier whose error rate is no larger than
R(S∗

1 ∩ S∗
2 ) + ǫ

2 with probability at least 1 − δ. With the proof of Corollary 1, we get that
R(S∗

1 ∩ S∗
2 ) + ǫ

2 is no larger than R(S∗
v ) + ǫ. �
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