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1 Proof of Theorem 1
Lemma 1 If 2x assumes a beta distribution with parameter (1, β), the expection of x,
x2, x3, x4 is

E(x) =
1

2

1

β + 1

E(x2) =
1

2

1

(β + 2)(β + 1)

E(x3) =
3

4

1

(β + 1)(β + 2)(β + 3)

E(x4) =
3

2

1

(β + 1)(β + 2)(β + 3)(β + 4)

Proof: It is known that the expectation of the beta distribution B(1, β) is E(x) =
1

β+1 , therefore the first equation is immediate.
For k > 1, the expectations E(xk) of a beta distribution can be computed as:∫ 1

0

1

B(α, β)
xkxα−1(1− x)β−1dx

=

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
xkxα−1(1− x)β−1dx

=
Γ(α+ β)Γ(α+ k − 1)

Γ(α+ k − 1 + β)Γ(α)

∫ 1

0

Γ(α+ k − 1 + β)

Γ(α+ k − 1)Γ(β)
xkxα−1(1− x)β−1dx

=
Γ(α+ β)Γ(α+ k − 1)

Γ(α+ k − 1 + β)Γ(α)

∫ 1

0

x
1

B(α+ k − 1, β)
xα+k−2(1− x)β−1dx

=

∏k−2
j=0 (α+ j)∏k−2

j=0 (α+ β + j)

α+ k − 1

α+ k − 1 + β
(k ≥ 2) (1)
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The last step use the formulaeB(x+y) = Γ(x)Γ(y)
Γ(x+y) and Γ(x+1) = xΓ(x), as well

as the expectation of the beta distribution E(x) = α
α+β .

If 2x instead of x assumes the beta distribution, then

E(xk) =
1

2k
E((2x)k)

=
1

2k

∏k−2
j=0 (α+ j)∏k−2

j=0 (α+ β + j)

α+ k − 1

α+ k + β − 1
. (2)

Substite α = 1, k = 2, 3, 4 we obtain the Lemma. �

Proof of Theorem 1:

Proof: Define η(xi) = Pr(y = 1|xi,Pr(y = −1|xi) > Pr(y = 1|xi)). The most
adversarial scenario is Pr(1− 2η(xi) ≤ 2ε) = cεβ , because this maximizes uniformly
the chance that the class-conditional probability is close to 1/2. This means 2η(xi)
assumes a beta distributionB(1, β). It could be proved that the likelihood ratio satisfies
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4
η2 +

3

4
η ≤ η

1− η
≤ 2η2 + η

From Lemma 1, we know that E(η2) = 1
2

1
(β+2)(β+1) , E(η) = 1

2
1

β+1 , therefore we
have

3

8

β + 5

(β + 1)(β + 2)
≤ E(

η

1− η
) ≤ β + 4

2(β + 1)(β + 2)

Furthermore, a bound on the variance can be computed as

V (
η

1− η
) = E[(

η

1− η
)2]− E[(

η

1− η
)]2

≤ 4E(η4) + 4E(η3) + E(η2)− 9

64

(β + 5)2

(β + 1)2(β + 2)2

≤ (
1

2
+

5

8(β + 1)
+

51β − 83

8(β + 1)(β + 3)(β + 4)
)

1

(β + 1)(β + 2)

in which E(η4) = 3
2

1
(β+1)(β+2)(β+3)(β+4) , E(η3) = 3

4
1

(β+1)(β+2)(β+3) . The last step
involves some quite complicated arithmetics and simplification.

A simpler bound can be expressed as:

V (
η

1− η
) ≤ (4β + 1)

2(β + 1)2(2β + 3)
,

which is an upper bound of the above bound.
By Bennett’s inequality [1],

1

n

n∑
i=1

Zi − E(Z) ≤
√

2V (Z) log 1/δ

n
+

log 1/δ

3n
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therefore with probability 1− δ,

n∑
i=1

Zi ≤ nE(Z) +
√

2nV (Z) log 1/δ +
log 1/δ

3
.

Take Z = η
1−η and plug in the mean and variance bounds computed previously, we

obtain the theorem. �

2 Proof of Theorem 2
(a) It is straightforward to show that

R(f)−R∗ = R(f)−R(η − 1/2)

= E(1[f(X) > 1, η(X) < 1/2](1− 2η(X))

+E(1[f(X) < 1, η(X) > 1/2](2η(X)− 1))

= (R−(f)−R∗
−) +R+(f)−R∗

+

We apply Jensen’s inequality to both summands and obtain

ψ(−1[η(X) < 1/2](R(f)−R∗))) + ψ(1[η(X) ≥ 1/2](R(f)−R∗))

≤ E(ψ(−1[η(X) < 1/2, f(X) > 1](1− 2η(X)))

+ψ(1[η(X) ≥ 1/2, f(X) < 1](2η(X)− 1)))

= E(1[sign(f(X)− 1) 6= sign(η(X)− 1/2)]ψ((2η(X)− 1)))

≤ E(1[sign(f(X)− 1) 6= sign(η(X)− 1/2)]ψ̃((2η(X)− 1)))

= E(1[sign(f(X)− 1) 6= sign(η(X)− 1/2)](H−(η(X))−H(η(X))))

= E

(
1[sign(f(X)− 1) 6= sign(η(X)− 1/2)]

(
inf

α,(α−1)(2η(X)−1)≤0
C(α, η(X))−H(η(X))

))
≤ E(C(α, η(X))−H(η(X)))

= RC(f)−R∗
C

(b) First note that since ψ(0) = 0 and ψ is continuous, θi → 0 implies ψ(θi) → 0.
Thus we can replace condition (2) by

(2’) For any sequence (θi) in [−1, 1],

ψ(θi) → 0 implies θi → 0

To see that (1) implies (2’), let C be classification-calibrated, and let (θi) be a
sequence that does not converge to 0. Define c = lim sup θi > 0, and pass to a
subsequence with lim θi = c. Then by continuity limψ(θi) = ψ(c), and ψ(c) > 0 by
classification-calibration. Thus for the original seequence (θi), we see lim supψ(θi) >
0, so we cannot have ψ(θi) → 0.

To see that (2’) implies (3), suppose thatRC(fi) → R∗
C . By part (a) of the theorem

ψ−(R−(fi) − R∗
−) + ψ(R+(fi) − R∗

+) → 0, since both ψ− and ψ are convex and
positive, (2’) implies R(fi) → R∗.
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Finally, to see (3) implies (1), suppose C is not classification-calibrated. By defini-
tion, we can choose η 6= 1/2 and a sequence α1, α2, . . . such that sign(αi(η−1/2)) =
−1 but cη(αi) → H(η). Fix x and choose the probability distribution P so that
PX{x} = 1 and P (Y = 1|X = x) = η. Define a sequence of functions fi for
which fi(x) = αi. Then limR(fi) > R∗, and this is true for any infinite subsequence.
But Cη(αi) → H(η) implies RC(fi) → R∗

C . The contradiction proves the final part
of the theorem. �

3 Equivalent Constant Transforms
Proposition 1 For loss functions that satisfy a scaling equalityL(k1ŷ, k1y) = k2L(ŷ, y),
solving (4) with C = C0 and Di for each bag is equivalent with solving (3) with
C =

k2
1

k2
C0 and k1Di.

Proof: A variable substitution of z = k1y and v = k1w in (3) would obtain the
conclusion. �

The support vector regression (SVR) we use satisfiesL(k1ŷ, k1y; ε) = k1L(ŷ, y;
ε
k1
).

In this case, the uniform scaling on all the Dis is equivalent to subsequent changes in
both C and ε.

4 Projection to the Bag Constraint
We use the following procedure to project y+: Denote the sum of scores in a bag as
si =

∑
x+
j ∈Bi

y+j . For each bag Bi, we check if si < Di, if not, we simply set all the

negative y+j to 0. If si < Di, we add Di−si
|Bi| to each y+j . This makes si = Di. Then we

set all the negative y+j to 0. If this makes si > Di, we subtract equal amount on all the
positive y+j , to make si = Di. If this created additional negative y+j , the alternating
projection process goes on until both conditions: si = Di and y+ ≥ 0 are fulfilled.

5 Derivation of the SVM dual problem
First rewrite the optimization in the canonical form:

min
w,b,y+

1
2‖w‖

2 + C(
∑n++n−

i=1 (ξi + ξ̂i))

s.t. (〈w, φ(xi)〉+ b)− yi ≤ ε+ ξi, for each x+i , x−i
yi − (〈w, φ(xi)〉+ b) ≤ ε+ ξ̂i, for each x+i , x−i∑

x+
j ∈Bi

y+j ≥ Di|Bi|

y+j ≥ 0

where yi = 0 for x−i and K(x, y) = 〈φ(x), φ(y)〉.
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Setting α−
i , α

+
i as the Lagrange multipliers of the first and second set of constraints,

and ηj the Lagrange multipliers of the bag constraints, we obtain the following KKT
condition:

w =
∑

i(α
+
i − α−

i )φ(xi)

0 ≤ α+
i , α

−
i ≤ C

ηj ≤ α+
i − α−

i∑
i(α

+
i − α−

i ) = 0

α+
i , α

−
i , ηj ≥ 0

From the KKT conditions one could see that to make the equality constraint
∑

x+
j ∈Bi

y+j =

Di|Bi| hold, we need ηj > 0, essentially, each α+
i in the bag must be positive. This

means that yi − (〈w, φ(xi)〉 + b) ≥ ε for all the items in the bag. Thus, to make the
equality hold, all items in the positive bag need to be predicted smaller than their real
value yi. Another issue is, since η ≥ 0 must hold, α+

i ≥ α−
i , since only one of α+

i

and α−
i is nonzero, this means α−

i = 0 for instances in positive bags. Therefore, the
situation that α+

i = 0, α−
i > 0 could never exist. Back to the original optimization

problem, this means (〈w, φ(xi)〉+ b)− yi ≤ ε+ ξi never holds in equality. Therefore,
(〈w, φ(xi)〉+ b) ≤ yi + ε.

The dual problem is very similar with the original SVM, with only minor differ-
ences introduced from η:

min
α+,α−,η

1
2 (α

+ − α−)TK(α+ − α−)

+ε
∑n

i=1(α
+
i + α−

i )−
∑k

i=1Di|Bi|ηi
s.t. 0 ≤ α+

i , α
−
i ≤ C∑n

i=1(α
+
i − α−

i ) = 0

ηj ≤ α+
i − α−

i , xi ∈ Bj

α+
i , α

−
i , ηj ≥ 0

From the dual problem, we could see that ηj needs to be made larger to im-
prove the result of the dual. Therefore, the algorithm would always prefer to choose
ηj > 0. From our previous analysis this essentially means that the equality constraint∑

x+
j ∈Bi

y+j = Di|Bi| is desirable. Thus the algorithm would tend to make more vec-
tors from positive bags as support vectors. And tend to make predictions smaller than
the estimated value yi.

It could be seen that the best solution of ηj is ηj = max(minxi∈Bj
(α+

i − α−
i ), 0),

with this in mind, the problem can still be solved using an SMO-type active set ap-
proach of selecting two αi for one iteration.
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The SMO subproblem is thus:

min
αi,αj

1
2

[
siαi sjαj

] [Qii Qij

Qij Qjj

] [
siαi

sjαj

]
+ ε(αi + αj)

−Dk1 |Bk1 |ηk1 −Dk2 |Bk2 |ηk2

s.t. 0 ≤ αi, αj ≤ C

siαi + sjαj doesn’t change

where si and sj are the signs of αi and αj , respectively.
The SMO working set selection would be the same as in the original SVM, i.e.,

find the maximal violating pair, except that the gradient now needs to take η into con-
sideration.
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