
SUPPLEMENTARY MATERIAL

Getting lost in space: Large sample analysis of the
commute distance

Ulrike von Luxburg Agnes Radl
Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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This supplement is devoted to the proof of our main results: Theorems 2 and 3 of the main paper. For
convenience, we formulate all proofs in terms of the effective resistance between two vertices. To
convert effective resistance to the commute distance, one just has to multiply by the factor vol(G).
We rely on the notation that has been introduced in our main paper.

1 Lower bound on the resistance distance for arbitrary graphs

It is easy to prove that the resistance distance between two points is lower bounded by the sum of
the inverse degrees.

Proposition 4 (Lower bound) Let G be a weighted, undirected, connected graph and consider two
vertices s and t, s 6= t. Assume that G remains connected if we remove s and t. Then the effective
resistance between s and t is bounded by

Rst ≥
Qst

1 + wstQst

where Qst = 1/(ds − wst) + 1/(dt − wst). Note that if s and t are not connected by a direct edge
(that is, wst = 0), then the rhs simplifies to 1/ds + 1/dt.

Proof. The proof is based on Rayleigh’s monotonicity principle that states that increasing edge
weights in the graph can never increase the effective resistance between two vertices (cf. Corollary
7 in Section IX.2 of Bollobás, 1998). Given our original graph G, we build a new graph G′ by
setting the weight of all edges to infinity, except the edges that are adjacent to s or t (setting the
weight of an edge to infinity means that this edge has no resistance any more). This can also be
interpreted as taking all vertices except s and t and merging them to one super-node a. Now our
graph G′ consists of three vertices s, a, t, with several parallel edges from s to a, several parallel
edges from a to t. Exploiting the laws in electrical networks (resistances add along edges in series,
conductances add along edges in parallel; see Section 2.3 in Lyons and Peres (2010) for detailed
instructions and examples) leads to the desired result. ,
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2 Upper bound on the resistance in deterministic geometric graphs

This is the part that requires the hard work. Our proof is based on a theorem that shows how the
resistance between two points in the graph can be computed in terms of flows on the graph. The
following result is taken from Corollary 6 in Section IX.2 of Bollobás (1998).

Theorem 5 (Resistance in terms of flows, cf. Bollobás, 1998) Let G = (V,E) be an unweighted
graph. The effective resistance Rst between two fixed vertices s and t can be expressed as

Rst = inf

{∑
e∈E

u2
e

∣∣∣ u = (ue)e∈E unit flow from s to t

}
. (1)

Note that evaluating the formula in the above theorem for any fixed flow leads to an upper bound
on the effective resistance. The key to obtaining a tight bound is to distribute the flow as widely and
uniformly over the graph as possible.

For the case of geometric graphs (that is, graphs whose vertices correspond to points in some un-
derlying space Rd), we are going to use a grid on the underlying space to construct an efficient flow
between two vertices. Let X1, ..., Xn be a fixed set of points in Rd and consider a geometric graph
G with vertices X1, ..., Xn. Fix any two of them, say s := X1 and t := X2. Let X ⊂ R

d be a
connected set that contains both s and t. Consider a regular grid with grid width g on X . We say
that grid cells are neighbors of each other if they touch each other in at least one point.

Definition 6 (Valid grid) We call the grid valid if the following properties are satisfied:

1. Each cell of the grid contains at least one of the points X1, ..., Xn.

2. Points in the same or neighboring cells of the grid are always connected in the graph G.

3. The grid width g is small enough: Define the bottleneck h of the region X (see Definition
1 in the main paper) as the largest u such that the set {x ∈ X

∣∣ dist(x, ∂X ) > u/2} is
connected. We require that there exists a piecewise linear path between s and t which has
distance at least h/2 from ∂X . Denote the length of this path by d(s, t). We require that√

d− 1g ≤ h (a cube of side length g should fit in the bottleneck) and d(s, t) > 4
√

d− 1g
(the grid should be small enough such that the cubes containing s and t do not overlap).

Below we construct a flow from s to t with the help of the underlying grid. The main idea is to first
distribute the flow from s to all points in the grid cell C(s) that contains s. Then we follow a path
of grid cells that goes from the cell C(s) to the corresponding cell of C(t), and in the last step we
go to t itself.

At this point note a general concept that we will use over and over again. Assume we have N1

points in grid cell C1 and N2 points in grid cell C2, and assume that C1 and C2 are neighboring
cells. Then, if the grid is valid, all points in C1 are connected to all points in C2, that is we have
N1N2 different edges between the two cells.

We now prove the following general proposition that gives an upper bound on the resistance distance
between vertices in a fixed geometric graph.

Proposition 7 (Resistance on a fixed geometric graph) Consider a fixed set of points X1, ..., Xn

in some connected region X ⊂ R
d with bottleneck h (where the bottleneck is defined as in the

definition of a valid region in the main paper). Denote s = X1 and t = X2. Assume that s and t
have distance at least h/2 from ∂X . Let d(s, t) be be the length of a piecewise linear path between
s and t which has distance at least h/2 from ∂X . Consider a geometric graph on X1, ..., Xn and
let g be the width of a valid grid on X . By Nmin denote the minimal number of points in each grid
cell, and define a as

a :=
⌊
h/(2g

√
d− 1)

⌋
. (2)
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Then the effective resistance between s and t can be bounded as follows:

Rst ≤
1
ds

+
1
dt

+
1

Nmin

(
1
ds

+
1
dt

)
+


1

N2
min

(
1

d−1 (log(a) + 1) + 2d(s,t)
g(2a−1)d−1

)
if d = 3

1
N2

min

(
2

d−1 + 2d(s,t)
g(2a−1)d−1

)
if d > 3

(3)

The actual proof is rather lengthy and a bit tedious. The rest of this section is devoted to it.

Construction of the flow — overview.

Without loss of generality we assume that there exists a straight line connecting s and t which is
along the first dimension of the space.

Step 0: We start a unit flow in vertex s.

Step 1: We make a step to all neighbors Neigh(s) of s and distribute the flow uniformly over all
edges. That is, we traverse ds edges and send flow 1/ds over each edge.

Step 2: In one step we distribute the flow from the points in Neigh(s) uniformly to all points in the
grid cell C(s) that contains s. This is necessary as some of the neighbors of s are outside
of C(s), and for the next step we need that all flow sits in cell C(s).

Step 3: We now distribute the flow from C(s) to a larger region, namely to a (d−1)-dim hypercube
H(s) of side length h that is perpendicular to the linear path from s to t and centered at
C(s), see left plot of Figure 1. This can be achieved in several substeps that will be defined
below.

Step 4: We now traverse from H(s) to an analogous hypercube H(t) located at t using parallel
paths, see right plot of Figure 1.

Step 5: From the hypercube H(t) we send the flow to the neighborhood Neigh(t) (this is the “re-
verse” of steps 2 and 3).

Step 6: From Neigh(t) we finally send the flow to the destination t (“reverse” of step 1).

Details of the flow construction and computation of the resistance beween s and t.

We now describe the individual steps and their contribution to the bound on the resistance. By
the “contribution of a step” we mean the part of the sum in Theorem 5 that goes over the edges
considered in the current step.

Step 1 We start with a unit flow at s that we send over all ds adjacent edges. This leads to flow 1/ds

over ds edges. According to the formula in Theorem 5 this contributes

r1 = ds ·
1
d2

s

=
1
ds

Layer 2

Layer 1

s
C(s) = Layer 0 s t

Figure 1: Left plot: front view of a (d − 1)-dimensional hypercube with three layers, d = 3. Right
plot: step 3 of the flow, d = 3.
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to the overall resistance Rst.

Step 2: We now redistribute all flow from the neighbors of s to all points in the cell C(s). We want
to use as many edges as possible in this step. In our graph, all neighbors of s are connected to all
points in C(s) by construction. We now distribute the flow of each of the neighbors of s uniformly
to all points in C(s). That is, we use at least dsNmin edges to distribute our flow, that is each edge
gets flow at most 1/(dsNmin). This leads to a contribution of

r2 = dsNmin

(
1

dsNmin

)2

=
1

dsNmin

Step 3: To distribute the flow to the whole hypercube we divide the hypercube into layers. Layer
0 consists of the cell C(s) itself, the first layer consists of all cells adjacent to C(s), and so on (see
Figure 1, left plot). Layer i has side length (2i + 1)g. The number li of grid cells in Layer i, i ≥ 1,
can be lower bounded by

li ≥ 2(d− 1)(2i− 1)d−2.

All in all we consider a =
⌊
h/(2g

√
d− 1)

⌋
≤

⌊
h/(2(g − 1)

√
d− 1)

⌋
layers, so that the final layer

has diameter just a bit smaller than the bottleneck h. We now distribute the flow stepwise through
all layers, starting with unit flow in Layer 0.

To send the flow from Layer i − 1 to Layer i we want to use as many edges as possible. We can
lower bound the number of edges between these two layers by liN

2
min: each of the li cells in Layer

i is adjacent to at least one of the cells in Layer i − 1, and each cell contains at least Nmin points.
Consequently, we can upper bound the contribution of the edges between Layer i and i − 1 to the
resistance by

r3,i ≤ liN
2
min ·

(
1

liN2
min

)2

=
1

liN2
min

.

All in all we have a layers. Thus the overall contribution of Step 3 to the resistance can be bounded
by

r3 =
a∑

i=1

r3,i ≤
1

N2
min

a∑
i=1

1
li

.

Using the bounds on the li and assumption d ≥ 3 we get

r3 ≤
1

N2
min

a∑
i=1

1
li

=
1

2(d− 1)N2
min

a∑
i=1

1
(2i− 1)d−2

≤ 1
2(d− 1)N2

min

2a∑
i=1

1
(i)d−2

In case d = 3, the sum on the right hand side is the finite harmonic series and is upper bounded by
log(a)+1. If d > 3, the over-harmonic series on the right hand side converges to a constant smaller
than 2. All in all we get
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r3 ≤

{
1

2(d−1)N2
min

(log(a) + 1) if d = 3
1

2(d−1)N2
min

if d > 3

Step 4: Now we transfer all flow in “parallel cell paths” from H(s) to H(t). We have (2a− 1)d−1

parallel rows of cells going from H(s) to H(t), each of them contains d(s, t)/g cells. Thus all in
all we traverse (2a− 1)d−1N2

mind(s, t)/g edges, and each edge carries flow 1/((2a− 1)d−1N2
min).

Thus step 4 contributes

r4 ≤ (2a− 1)d−1N2
min

d(s, t)
g

·
(

1
(2a− 1)d−1N2

min

)2

=
d(s, t)

g(2a− 1)d−1N2
min

Step 5 is completely analogous to steps 2 and 3, with the analogous contribution r5 = 1
dtNmin

+ r3.

Step 6 is completely analogous to step 1 with overall contribution of r6 = 1/dt.

Summing up all these contributions leads to the following overall bound on the resistance:

Rst ≤
1
ds

+
1
dt

+
1

Nmin

(
1
ds

+
1
dt

)
+


1

N2
min

(
1

d−1 (log(a) + 1) + 2d(s,t)
g(2a−1)d−1

)
if d = 3

1
N2

min

(
2

d−1 + 2d(s,t)
g(2a−1)d−1

)
if d > 3

with a as defined in Eq. (2). This concludes the proof of Proposition 7. ,

Let us make a couple of technical remarks about this proof. For the ease of presentation we simpli-
fied the proof in a couple of respects.

Strictly speaking, we do not need to distribute the whole unit flow to the outmost Layer a. The reason
is that in each layer, a fraction of the flow already “branches off” in direction of t. We simply ignore
this leaving flow when bounding the flow in Step 2, our construction leads to an upper bound. It is
not so difficult to take the outbound flow into account, but it does not change the order of magnitude
of the final result. So for the ease of presentation we drop this additional complication and stick to
our rough upper bound.

When we consider Step 2 and the first couple of layers in Step 3 together, it turns out that some
edges are used twice and might lead to “loops” in the flow. To ensure that we have a proper flow
these loops could be removed. This would then just reduce the contribution of Steps 2 and 3, so that
our current estimate is an overestimation of the whole resistance.

In step 3 one has to take care that the flow is always uniformly distributed in each layer, that is
each grid cell of the layer gets the same amount of flow. The easiest way to achieve this is to
introduce a “redistribution phase” for each layer. In this phase, the arriving flow from Layer i− 1 is
redistributed in Layer i to achieve a uniform distribution. We omitted this step for simplicity, but it
does not change the final result apart from constants depending on the dimension.

The proof as it is spelled out above considers the case where s and t are connected by a straight line.
It can be generalized to the case where they are connected by a piecewise linear path. This does not
change the result in the end, but adds some technicality at the corners of the paths.

The construction of the flow only works if the bottleneck of X is not smaller than the diameter of
one grid cell, if s and t are at least a couple of grid cells apart from each other, and if s and t are not
too close to the boundary of X . We took care of these conditions in Part 3 of the definition of a valid
grid.

3 General properties of random geometric graphs

In this subsection we prove some basic results on random geometric graphs. These results are
well-known in the random geometric graph community, but not so much in the machine learning
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community. Unfortunately, we did not find any reference where the material is presented in the
way we need it (often the results are used implicitly or are tailored towards particular applications).
Hence we present the proofs in this section. We encourage the reader to skip this section for the first
reading, it is meant as a reference.

In the following, assume that X is a valid region according to Definition 1. Given any probability
density p on Rd, we now restrict the density to the region X .

An important tool for dealing with random geometric graphs is the following well-known concentra-
tion inequality for binomial random variables that has first appeared in Angluin and Valiant (1977).

Proposition 8 (Concentration inequalities) Let N be a Bin(n, p)-distributed random variable.
Then, for all δ ∈]0, 1],

P
(
N ≤ (1− δ)np

)
≤ exp(−1

3
δ2np)

P
(
N ≥ (1 + δ)np

)
≤ exp(−1

3
δ2np).

We will see below that computing expected, minimum and maximum degrees in random geometric
graphs always boils down to counting the number of data points in certain balls in the space. The
following proposition is a straightforward application of the concentration inequality above and
serves as “template” for all later proofs.

Proposition 9 (Counting sample points) Consider a sample X1, . . . , Xn drawn i.i.d. according
to density p on X . Let B1, . . . , BK be a fixed collection of subsets of X (the Bi do not need to
be disjoint). Denote by bmin := mini=1,...,K

∫
Bi

p(x)dx the minimal probability mass of the sets
Bi (similarly by bmax the maximal probability mass), and by Nmin and Nmax the minimal (resp.
maximal) number of sample points in the sets Bi. Then for all δ ∈]0, 1]

P
(
Nmax ≥ (1 + δ)nbmax

)
≤ K · exp(−δ2nbmax/3)

P
(
Nmin ≤ (1− δ)nbmin

)
≤ K · exp(−δ2nbmin/3).

Proof. This is a straightforward application of Proposition 8 using the union bound. ,

When working with ε-graphs or kNN-graphs, we often need to know the degrees of the vertices. As
a rule of thumb, the expected degree of a vertex in the ε-graph is of the order Θ(nεd), the expected
degree of a vertex in both the symmetric and mutual kNN graph is of the order Θ(k). The expected
kNN-distance is of the order Θ((k/n)1/d). All these rules of thumb also apply to the minimal and
maximal values of these quantities in the graph, provided the graph is “sufficiently connected”. The
following propositions make these rules of thumb explicit.

Proposition 10 (Degrees in the ε-graph) Consider an ε-graph on a valid region X ⊂ R
d.

1. Then, for all δ ∈]0, 1], the minimal and maximal degrees in the ε-graph satisfy

P
(
dmax ≥ (1 + δ)nεdpmaxηd

)
≤ n · exp(−δ2nεdpmaxηd/3)

P
(
dmin ≤ (1− δ)nεdpminηdα

)
≤ n · exp(−δ2nεdpminηdα/3).

In particular, if nεd/ log n →∞, then these probabilities converge to 0 as n →∞.

2. If n → ∞, ε → 0 and nεd/ log n → ∞, and the density p is continuous, then for each
interior point Xi ∈ X the degree is a consistent density estimate: di/(nεdηd) −→ p(Xi)
a.s.

Proof. Part 1 follows by applying Proposition 9 to the balls of radius ε centered at the data points.
Note that for the bound on dmin, we need to take into account boundary effects as only a part of the

6



ε-ball around a boundary point is contained in X . This is where the constant α comes in (recall
the definition of α from the definition of a valid region). Part 2 is a standard density estimation
argument: the expected degree of Xi is the expected number of points in the ε-ball around Xi.
For ε small enough, the density is approximately constant in this ball because we assumed the
density to be continous. Then the expected number of points is approximately nεdηdp(Xi) where
ηd denotes the volume of a d-dimensional unit ball. By concentration arguments it is easy to see
that the actual number of points is close to this expectation, and that convergence holds under the
conditions stated. ,

Recall the definitions of the k-nearest neighbor radii: Rk(x) denotes the distance of x to its k-
nearest neighbor among the Xi, and the maximum and minimum values are denoted Rk,max :=
maxi=1,...,n Rk(Xi) and Rk,min := maxi=1,...,n Rk(Xi).

Proposition 11 (Degrees in the kNN-graph) Consider a valid region X ⊂ R
d.

1. With probability at least 1− n exp(−c1k) the minimal and maximal kNN-radii satisfy

Rk,min ≥ c2(k/n)1/d and Rk,max ≤ c3(k/n)1/d.

2. Moreover, with probability at least 1 − n exp(−c4k) the minimal and maximal degree in
both the symmetric and mutual kNN graph are of the order Θ(k) (the constants differ).

3. If the density is continuous, n → ∞, k/n → 0 and k/ log n → ∞, then in both the
symmetric and the mutual kNN graph, k/di → 1.

Proof. Part 1. Define the constant a = 1/(2pmax) and the radius r := a (k/n)1/d, fix a
sample point x, and denote by µ the probability mass of the ball around x with radius r. Set
µmax := rdηdpmax ≥ maxx∈X µ. Note that if k/n is small enough, then µmax < 1. The main idea
is that Rk(x) ≤ r if and only if there are at least k data points in the ball of radius r around x. Let
M ∼ Bin(n, µ) and V ∼ Bin(n, µmax). Note that by the choices of a and r we have E(V ) = k/2.
All this leads to

P
(
Rk(x) ≤ r

)
≤ P

(
M ≥ k

)
≤ P

(
V ≥ k

)
= P

(
V ≥ 2E(V )

)
.

Applying the concentration inequality of Proposition 8 and using a union bound leads to the follow-
ing result for the minimal kNN radius:

P
(
Rk,min ≤ a

(
k

n

)1/d )
≤ n exp(−k/6).

By a similar approach we can prove the analogous statement for the maximal kNN radius. Note that
for the bound on Rk,max we additionally need to take into account boundary effects: at the boundary
of X , only part of the ball around a point is contained in X , which affects the value of µmin. We
thus define µmin = rdηdpminα where α is the constant defined in the general assumptions. Then we
continue similarly to above and get

P
(
Rk,max ≥ ã

(
k

n

)1/d )
≤ n exp(−k/6).

Part 2. In the directed kNN graph, the degree of each vertex is exactly k. Thus, in the mutual kNN
graph, the maximum degree over all vertices is upper bounded by k, in the symmetric kNN graph
the minimum degree over all vertices is lower bounded by k.

For the symmetric graph, observe that the maximal degree in the graph is bounded by the maximal
number of points in the balls of radius Rk,max centered at the data points. We know that with high
probability, a ball of radius Rk,max contains of the order Θ(nRd

k,max) points. Using Part 1 we
know that with high probability, Rk,max is of the order (k/n)1/d. Thus the maximal degree in the
symmetric kNN graph is of the order Θ(k), with high probability.
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In the mutual graph, observe that the minimal degree in the graph is bounded by the minimal number
of points in the balls of radius Rk,min centered at the data points. Then the statement follows
analogously to the last one.

Part 3, proof sketch. Consider a fixed point x in the interior of X . We know that both in the
symmetric and mutual kNN graph, two points cannot be connected if their distance is larger than
Rk,max. As we know that Rk,max is of the order (k/n)1/d, under the growth conditions on n
and k this radius becomes arbitrarily small. Thus, because of the continuity of the density, if n is
large enough we can assume that the density in the ball B(x,Rk,max) of radius Rk,max around x is
approximately constant. Thus, all points y ∈ B(x,Rk,max) have approximately the same expected
k-nearest neighbor radius R := (k/(n · p(x)ηd))1/d. Moreover, by concentration arguments it is
easy to see that the actual kNN radii only deviate by a factor 1± δ from their expected values.

Then, with high probability, all points inside of B(x,R(1 − δ)) are among the k nearest neighbors
of x, and all k nearest neighbors of x are inside B(x,R(1 + δ)). On the other hand, with high
probability x is among the k nearest neighbors of all points y ∈ B(x,R(1 − δ)), and not among
the k nearest neighbors of any point outside of B(x,R(1 + δ)). Hence, in the mutual kNN graph,
with high probability x is connected exactly to all points y ∈ B(x,R(1 − δ)). In the symmetric
kNN graph, x might additionally be connected to the points in B(x,R(1 + δ)) \ B(x,R(1 − δ)).
By construction, with high probability the number of sample points in these balls is (1 + δ)k and
(1− δ)k. Driving δ to 0 leads to the result. ,

4 Finally completing the proof of Theorems 2 and 3

First of all, note that by Rayleigh’s principle (cf. Corollary 7 in Section IX.2 of Bollobás, 1998) the
effective resistance between vertices cannot decrease if we delete edges from the graph. So given
a sample from the underlying density p, some random geometric graph based on this sample, and
some valid region X , we first delete all points that are not in X . Then we consider the remaining
geometric graph. The effective resistances on this graph are upper bounds on the resistances of the
original graph. Then we conclude the proofs with the following arguments:

Proof of Theorem 3. The lower bound on the deviation follows immediately from Proposition 4.
The upper bound is a consequence of Proposition 7 and the properties of random geometric graphs
presented above. In particular, note that we can choose the grid width g := ε

2
√

d−1
to obtain a

valid grid. The quantity Nmin can be bounded as stated in Proposition 9 and the degrees behave
as described in Proposition 10 (we use δ = 1/2 in these results for simplicity). Plugging all these
results together leads to the following statement:

∣∣∣∣nεdRij −
(

nεd

di
+

nεd

dj

)∣∣∣∣
≤ 2d+2(d− 1)d/2

p2
minηdα

· 1
nεd

+


22d+2(d−1)d

p2
min

· 1
nεd

(
log(h/ε)+1

d−1 +
√

d−1 d(s,t)
2d−3hd−1 · εd−2

)
if d = 3

22d+2(d−1)d

p2
min

· 1
nεd

(
2

d−1 +
√

d−1 d(s,t)
2d−3hd−1 · εd−2

)
if d > 3

≈

{
c5

1+log(1/ε)+ε
nε3 if d = 3

c6
1

nεd if d > 3

,

The constants in this result look terrible with respect to the dimension d. However, we believe that
this is due to the fact that our setup is an unfortunate mix between balls and cubes (the constants
come from the fact that we have to ensure that the diagonals of cubes still fit into certain balls). We
hope to tidy up the proof in future and provide better constants. The same goes for the next result
which we prove now.

Proof of Theorem 2. This proof is completely analogous to the ε-graph. As grid width g we choose
g = Rk,min/(2

√
d− 1) where Rk,min is the minimal k-nearest neighbor distance (note that this
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works for both the symmetric and the mutual kNN-graph). Then the statements of the theorem
follow by combining Propositions 7, 9 and 11 (by c := 1/(2pmax) we denote the constant hidden in
the O-notation of Proposition 11 for Rk,min). The result is

∣∣∣∣kRij −
(

k

di
+

k

dj

)∣∣∣∣
≤ 2d+2(d− 1)d/2

p2
min c cd

· 1
k

+


22d+2(d−1)d

p2
minc2d · 1

k

(
log(h/(c(k/n)1/d)+1

d−1 +
√

d−1 d(s,t)cd−2

2d−3hd−1 · (k/n)(d−2)/d
)

if d = 3
22d+2(d−1)d

p2
minc2d · 1

k

(
2

d−1 +
√

d−1 d(s,t)cd−2

2d−3hd−1 · (k/n)(d−2)/d
)

if d > 3

≈
{

c4
1
k

(
1 + log(n/k) + (k/n)1/3

)
if d = 3

c5
1
k if d > 3

,
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