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Abstract

In this document, we first give an example where the radius of the uniform com-
bination of basis kernels is far smaller than the radius of each basis kernel. Then,
we present proofs for Proposition 2, Theorem 1 and Proposition 4. Finally, we
illustrate the convergence speed of our algorithm by experiments.

1 An example

In the linear combination case k(θ) =
∑

j θjkj (θj >0), consider the squared radius of MEB in the
feature space endowed with k(θ), which is denoted by r2(θ) .= R2(k(θ)). The convexity of r2(θ) is
stated in the following.

Lemma 1. In the linear combination case k(θ) =
∑

j θjkj (θj > 0), the squared radius r2(θ) of
MEB in the feature space endowed with k(θ) is a convex function w.r.t. θ.

Proof. In the linear combination case, the squared radius is equal to

r2(θ) = miny,cj
y, s.t.

∑
j ‖

√
θjφ(xi; kj)− cj‖2 − y ≤ 0. (1)

The distance term in the constraint is equal to:
∑

j ‖
√

θjφ(xi; kj) − cj‖2 =∑
j

(
θjkj(xi, xi)+‖cj‖2−2〈

√
θjφ(xi; kj), cj〉

)
. Let c̃j =

√
θjcj , then we have

r2(θ) = miny,c̃j
y, s.t.

∑
j

(
θjkj(xi, xi) + ‖c̃j‖2/θj − 2〈φ(xi; kj), c̃j〉

)
− y ≤ 0. (2)

Note the objective function is convex w.r.t. {θ, c̃j , y}, and the constraint is also convex w.r.t.
{θ, c̃j , y} due to the convexity of ‖c̃j‖2/θj (which is proven in [1]). Thus, r2(θ), which is the
partial minimal value of the convex problem (2) w.r.t. only {c̃j , y}, is convex w.r.t. θ.

Now we further suppose R(kj), which are the radiuses of basis kernels kj , are all equal to B, and
also impose an L1 norm constraint

∑
j θj = 1. Due to the convexity, for any θ, we have r2(θ) ≤ B2.

This shows how the L1 norm constraint guarantees an upper bound on r2(θ). However, this bound
may be very loose. For example, let p kernel matrices Kj .= [kj(xa, xb)]ab = vj

>vj , where vj is
a vector of length 2p, the (2j − 1)-th and the (2j)-th elements of vj is B and −B, respectively, and
other elements are zero. Then the squared radius of each Kj is equal to B2, whereas the squared
radius of their uniform combination Kunif =

∑p
j=1

1
pKj is no larger than the maximal diagonal

element of Kunif , which is equal to B2

p (the maximal diagonal element corresponds the squared
radius of the enclosing ball centered at the origin, which is no smaller than MEB). This example
shows that for large p, the radius of the learned kernel under the L1 norm constraint may be far
smaller than the upper bound B. With such a loose bound on r2(θ), minimizing ‖w‖2 itself gives no
guarantee for obtaining the kernel with the smallest (or approximately smallest) r2(θ)‖w‖2. Instead
of using a loose upper bound, our approach exactly handle the radius of MEB of the learned kernel.
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2 Proof of Proposition 2

Proposition 2. Given any norm definition N (·) and any set S ⊆ R, suppose there exists c > 0
that satisfies c ∈ S. Let (a) denote the problem of minimizing glinear(θ) s.t. θi ≥ 0, and (b) denote
the problem of minimizing glinear(θ) s.t. θi ≥ 0 and N (θ) ∈ S. Then we have: (1) For any local
(global) optimal solution of (a), denoted by θa, c

N (θa)θ
a is also the local (global) optimal solution

of (b). (2) For any local (global) optimal solution of (b), denoted by θb, θb is also the local (global)
optimal solution of (a).

Proof. For conclusion (1), as θa is the local optimal solution of (a), there exists δ > 0 that for any
θ1 (θ1

i ≥ 0) that satisfies ‖θ1 − θa‖ ≤ N (θa)
c δ, we have g(θ1) ≥ glinear(θa) = glinear( c

N (θa)θ
a).

Then, for any θ (θi ≥ 0) that satisfies ‖θ − c
N (θa)θ

a‖ ≤ δ, we have ‖N (θa)
c θ − θa‖ =

N (θa)
c ‖θ− c

N (θa)θ
a‖ ≤ N (θa)

c δ, and thus glinear(
N (θa)

c θ) ≥ glinear( c
N (θa)θ

a), and then glinear(θ) =

glinear(
N (θa)

c θ) ≥ glinear( c
N (θa)θ

a). Due to N ( c
N (θa)θ

a) = c ∈ S, c
N (θa)θ

a also satisfies the con-
straint of (b), and thus c

N (θa)θ
a is the local optimal solution of (b). If θa is the global optimal

solution of (a), we can set δ to be ∞, and then c
N (θa)θ

a is also the global solution of (b).

For proof of conclusion (2), we use two types of distances: d1(x, y) = N (x − y) and d2(x, y) =
|N (x) − N (y)| + N (x − y) (It is easy to verify that d1 and d2 satisfy the metric conditions). On
one hand, since θb is the local optimal solution of (b), there exists δ > 0 that for any θ2 (θ2

i ≥ 0)
that satisfies d1(θ2, θb) ≤ δ and N (θ2) ∈ S, we have glinear(θb) ≤ glinear(θ2). On the other
hand, for any θ (θi ≥ 0) that satisfies d2(θ, θb) ≤ δ, we have N (N (θb)

N (θ) θ) = N (θb) ∈ S and

d1(
N (θb)
N (θ) θ, θb) = N (N (θb)

N (θ) θ− θ + θ− θb) ≤ N (N (θb)
N (θ) θ− θ) +N (θ− θb) = d2(θ, θb) ≤ δ. Note

N (θb)
N (θ) θ satisfies the conditions of θ2, and thus we have g(N (θb)

N (θ) θ)≥ glinear(θb). Due to the scaling
invariance, we have g(θ) ≥ glinear(θb) (for any θ that meets d2(θ, θb)≤δ). Therefore, θb is also the
local optimal solution of (b). If θb is the global optimal solution of (b), let δ be ∞, and then θb is
also the global optimal solution of (a).

3 Proof of Theorem 1

First we generalize Danskin’s theorem [2], as the following.
Lemma 2. Let X be a metric space and U be a normed space. Suppose that for all x ∈ X the
function f(x, ·) is differentiable, that f(x, u) and ∂f(x,u)

∂u are continuous on X × U and let Φ be
a compact subset of X. Let define the optimal value function as v(u) = infx∈Φ f(x, u). (a) The
optimal value function is directionally differentiable. Furthermore, if for any u ∈ U , f(·, u) has
a unique minimizer x∗ over Φ then (b1) v(u) is differentiable, (b2) dv(u)

du = ∂f(x∗,u)
∂u , (b3) the

minimizer x∗(u) is continuous w.r.t. u, and (b4) dv(u)
du is also continuous.

Proof. Statements (a) (b1) and (b2) have been proven by Danskin [2]. Below we give the proofs of
conclusions (b3) and (b4).

First we prove that the minimizer x∗(u) is continuous w.r.t. u by contradiction. Given u0 and the
corresponding minimizer x0 = x∗(u0), let us assume there exists a sequence um → u0, and the the
corresponding minimizers xm = x∗(um) does not converge to x0. Then there must exist a positive
value ε > 0 so that for any large number N , there exist i > N and ‖xi − x0‖ > ε. Thus we
can pick up an infinite subsequence xm′

, which satisfies ‖xm′ − x0‖ > ε. Because Φ is compact,
there must exist a converging sub-subsequence xm′′

in xm′
and a limit s so that xm′′ → s. From

‖xm′′ − x0‖ > ε we get conclusion (A): ‖s− x0‖ ≥ ε.

On the other hand, consider the corresponding sequence um′′
. Because the xm′′

is the minimizer
of f(·, um′′

), we have f(xm′′
, um′′

) ≤ f(x0, um′′
). Because f is continuous, xm′′ → s and

um′′ → u0, we get f(s, u0) ≤ f(x0, u0). As x0 is the unique minimizer, we get conclusion (B):
s = x0.
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Note that (A) and (B) are contradict, and thus we finish the proof that x∗(u) is continuous (Conclu-
sion (b3)).

Conclusion (b2) states the derivative dv(u)
du = ∂f(x∗,u)

∂u . Due to the continuity of x∗(·) and ∂f(·,·)
∂u ,

we get: dv(u)
du is continuous (Conclusion (b4)).

Then, by use of the above lemma, we get the following theorem.
Theorem 1. Let Y be a metric space, X , U and Z be normed spaces. Suppose that: (1) for all
x ∈ X the function g1(x, ·, ·) is differentiable, (2) the function g1(x, u, z), ∂g1(x,u,z)

∂u and ∂g1(x,u,z)
∂z

are continuous on X × U × Z, (3) for all y ∈ Y the function g2(y, ·, ·) (g2 : Y ×X × U → Z) is
differentiable, (4) the function g2(y, x, u), ∂g2(y,x,u)

∂x and ∂g2(y,x,u)
∂u are continuous on Y ×X × U ,

(5) sets ΦX and ΦY are compact subsets of X and Y , respectively.

Let us define a bi-level optimal value function as
v1(u) = infx∈ΦX

g1(x, u, v2(x, u)), (3)
where v2(x, u) is another optimal value function as

v2(x, u) = infy∈ΦY
g2(y, x, u). (4)

If for any x and u, g2(·, x, u) has a unique minimizer y∗(x, u) over ΦY , then y∗(x, u) are continuous
on X × U , and v1(u) is directionally differentiable. Furthermore, if for any u, the g1(·, u, v2(·, u))
has also a unique minimizer x∗(u) over ΦX , then

1. the minimizer x∗(u) are continuous on U ,

2. v1(u) is continuously differentiable, and its derivative is equal to
dv1(u)

du =
(

∂g1(x
∗,u,v2)
∂u + ∂v2(x

∗,u)
∂u

∂g1(x
∗,u,v2)

∂v2

)∣∣∣
v2=v2(x∗,u)

, where ∂v2(x
∗,u)

∂u = ∂g2(y
∗,x∗,u)
∂u . (5)

Proof. Because g2(y, x, u) is continuously differentiable w.r.t. x and u, using conditions (3)-(5)
and Lemma 2 we get: (I) y∗(x, u) are continuous on X × U , and (II) v2(x, u) is continuously
differentiable w.r.t. x and u, and

∂v2(x,u)
∂u = ∂g2(y

∗,x,u)
∂u . (6)

Since g1(x, u, v2) is continuous w.r.t. x, u and v2, and v2(x, u) is continuous w.r.t. x and u, thus
g1(x, u, v2(x, u)) is continuous w.r.t. x and u. Then, because g1(x, u, v2) is continuously differen-
tiable w.r.t. u and v2 and v2(x, u) is continuously differentiable w.r.t. u, we get that g2(x, u, v2(x, u))
is continuously differentiable w.r.t. u. Using Lemma 2, we get: v1(u) is directionally differentiable.

If for any u, the g1(·, u, v2(·, u)) has also a unique minimizer x∗(u) over ΦX , using Lemma 2 we
have:

1. v1(u) is differentiable,

2. the derivative is equal to
dv1(u)

du =
(

∂g1(x
∗,u,v2)
∂u + ∂v2(x

∗,u)
∂u

∂g1(x
∗,u,v2)

∂v2

)∣∣∣
v2=v2(x∗,u)

, where ∂v2(x
∗,u)

∂u = ∂g2(y
∗,x∗,u)
∂u . (7)

3. the minimizer x∗(u) and the derivative dv1(u)
du are continuous w.r.t. u.

Remarkably, the bi-level optimization problem defined in (3) is a more general form than the min-
max problem. Give any min-max problem:

o(u) = minx maxy g3(x, y, u). (8)
Set g1(x, u, v2) = −v2 and g2(y, x, u) = −g3(x, y, u). Then the bi-level optimization problem (3)
is equivalent to the min-max problem: v1(u) = o(u). On the inverse direction, when g1(x, u, v2)
is not monotone to v2, the bi-level optimization problem can not be transformed to be a min-max
problem.
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4 Proof of Proposition 4

Proposition 4. In linear combination cases, for any local optimal solution of the RKL problem,
denoted by θ∗, there exist C1 > 0 and C2 > 0 that θ∗ is the global optimal solution of the following
convex problem:

min
θ,wj ,b,ξi

1
2

∑
j ‖wj‖2 + C1r

2(θ) + C2

∑
i ξ2

i , s.t. yi(
∑

j〈wj , φ(xi; θjkj)〉+b)+ξi≥1, ξi≥0. (9)

Proof. On one hand, in the linear combination cases the RKL problem is as

min
θ,wj ,b,ξi

1
2

∑
j ‖wj‖2r2(θ) + C

∑
i ξ2

i , s.t. yi(
∑

j〈wj , φ(xi; θjkj)〉+b)+ξi≥1, ξi≥0. (10)

Let w̃j√
θj

= wj to substitute wj , we get

min
θ,wj ,b,ξi

1
2

∑
j

w̃2
j

θj
r2(θ) + C

∑
i ξ2

i , s.t. yi(
∑

j〈w̃j , φ(xi; kj)〉+b)+ξi≥1, ξi≥0. (11)

On the other hand, problem (9) is equivalent to

min
θ,wj ,b,ξi

C3
2

∑
j

w̃2
j

θj
+ C1r

2(θ) + C2

∑
i ξ2

i , s.t. yi(
∑

j〈w̃j , φ(xi; kj)〉+b)+ξi≥1, ξi≥0, (12)

with C3 = 1. Due to the convexity of r2(θ) and
w̃2

j

θj
, problem (12) has a convex objective function

and convex constraints.

Note that the constraints in (11) and (12) are the same, and also the same with the constraints in
SVM. It has been well known that for such constraints, the regularity conditions of LICQ (Linear
independence constraint qualification) are satisfied if K(θ) is strictly positive definite (which is also
easy to be verified). So the necessary condition of any local optimal solution of (11) is that it satisfies
the K.K.T. (Karush-Kuhn-Tucker) conditions. Let z = {θ, w̃, b}, and

f1(z) =
∑

j

w̃2
j

θj
, f2(z) = r2(θ), f3(z) =

∑
i ξ2

i , (13)

gi(z) = 1− yi(
∑

j〈w̃j , φ(xi; kj)〉+b)−ξi, gn+i = −ξi. (14)

For any local optimal solution of (11), denoted by z∗, it must satisfies the K.K.T. conditions, as:

1
2f2(z∗)

df1(z
∗)

dz∗ + 1
2f1(z∗)

df2(z
∗)

dz∗ + C df3(z
∗)

dz∗ +
∑2n

i=1 µi
dgi(z

∗)
dz∗ = 0, (15)

gi(z∗) ≤ 0, µi ≥ 0, µigi(z∗) = 0. (16)

Note this is also the K.K.T. conditions of problem (12) when C1 = 1
2f1(z∗), C2 = C and C3 =

f2(z∗). Since problem (12) is a (continuously differentiable) convex minimization problem, z∗ is
the global optimal solutions of (12) with above settings of Ci. Problem (12) with these settings of
Ci is also equivalent to problem (12) with new settings C1 = f1(z

∗)
2f2(z∗) , C2 = C

f2(z∗) and C3 = 1,
which is again equivalent to problem (9). So, for any local solution θ∗ of the RKL problem, there
exist C1 > 0 and C2 > 0 that θ∗ is the global optimal solution of problem (9).

5 Convergence speed

Here we illustrate the computational efficiency of our presented algorithm. Figure 1 shows the
objective functions along with invocation numbers of SVM and MEB solvers on the Ionosphere
set and the Splice set. Different types of norm constraints are used for comparison: L1, L2 and
no norm constraint. As stated, the RKL formulations with different types of norm constraints are
equivalent to each other, and thereby they result in the same optimal values. All three lines in the
left figure on the Ionosphere set show rapid convergence speeds: the objective function decreases
very rapidly, and get an approximate convergence within 10 invocations of SVM and MEB solvers.
The right figure on the Splice set gives similar results, where the objective values also approximately
converge within 10 invocations.
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Figure 1: Convergence speeds of RKL with C = 100. Left: on the Ionosphere set. Right: on the
Splice set.
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