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This paper contains supplementary information and full derivations for “Whose Vote Should Count
More: Optimal Integration of Labels from Labelers of Unknown Expertise”, NIPS 2009, by Jacob
Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier Movellan, at the University of
California San Diego.

1 Full EM Derivation

Recall the probability of correct image label given the labeler’s ability αi and the image’s difficulty
parameter βj :

p(Lij = Zj |αi, βj) =
1

1 + e−αiβj
(1)

The observed labels are samples from the {Lij} random variables. The unobserved variables are the
true image labels Zj , the different labeler accuracies αi, and the image difficulty parameters 1/βj .
Our goal is to efficiently search for the most probable values of the unobservable variables Z, α and
β given the observed data. Here we can use Expectation-Maximization approach (EM) to obtain
maximum likelihood estimates of the parameters of interest:

E step: Let the set of all given labels for an image j be denoted as lj = {lij′ | j′ = j}. Note
that not every labeler must label every single image. In this case, the index variable i in lij′ refers
only to those labelers who labeled image j. We need to compute the posterior probabilities of all
zj ∈ {0, 1} given the α,β values from the last M step and the observed labels:

p(zj |l,α,β) = p(zj |lj ,α, βj)
∝ p(zj |α, βj)p(lj |zj ,α, βj)

∝ p(zj)
∏

i

p(lij |zj , αi, βj)

where we noted that p(zj |α, βj) = p(zj) using the conditional independence assumptions from the
graphical model.

M step: We maximize the auxiliary function Q, which is defined as the expectation of the joint
log-likelihood of the observed and hidden variables (l,Z) given the parameters (α,β), w.r.t. the
posterior probabilities of the Z values computed during the last E step:

Q(α,β)
= E [ln p(l, z|α,β)]

= E

ln
∏
j

(
p(zj)

∏
i

p(lij |zj , αi, βj)

)
since lij are cond. indep. given z,α,β

=
∑

j

E

[
ln p(zj) +

∑
i

ln p(lij |zj , αi, βj)

]
=

∑
j

E [ln p(zj)] +
∑
ij

E [ln p(lij |zj , αi, βj)]
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where the expectation is taken over z given the old parameter values αold,βold as estimated during
the last E-step. Let us define pk = p(zj = k|l,αold,βold). Then we can expand this expectation as:

Q(α,β)

=
∑

j

1∑
k=0

pk ln p(zj = k) +

∑
ij

1∑
k=0

pk ln p(lij |zj = k, αi, βj)

Based on Equation (1), we can compute p(lij |zj = k, αi, βj) as:

p(lij |zj = 1, αi, βj) = σ(αiβj)lij (1− σ(αiβj))1−lij

and
p(lij |zj = 0, αi, βj) = σ(αiβj)1−lij (1− σ(αiβj))lij

where σ(x) = 1/(1 + e−x) is the logistic function. To avoid clutter, we will represent σ(αiβj)
simply as σ. Then, after expanding the summation over k into the two cases z = 0 and z = 1, we
get:

Q(α,β) =
∑

j

(
p1 ln p(zj = 1) + p0 ln p(zj = 0)

)
+

∑
ij

p1 [lij lnσ + (1− lij) ln(1− σ)] +

∑
ij

p0 [(1− lij) ln σ + lij ln(1− σ)]

Taking the first derivatives causes the first summation to vanish since it is constant w.r.t α and β.
Using the fact that

d

dx
σ(x) = σ(x)(1− σ(x))

we can differentiate Q to arrive at:

∂Q

∂αi
=

∑
j

p1(lij(1− σ)βj − (1− lij)σβj) +

∑
j

p0((1− lij)(1− σ)βj − lijσβj)

=
∑

j

(
p1lij + p0(1− lij)− (p1 + p0)σ

)
βj

=
∑

j

(
p1lij + p0(1− lij)− σ

)
βj

since p0 + p1 = 1

Similarly, we can derive:

∂Q

∂βj
=

∑
i

(
p1lij + p0(1− lij)− σ

)
αi

The gradient equation for ∂Q
∂αi

has an intuitive interpretation: The first two terms compute the em-
pirical probability of the given label lij being correct given posterior probabilities of Zj from the
previous E-Step. The σ that is subtracted is the model’s current estimate of the probability that lij
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is correct given the current estimate of the labeler’s ability and image’s difficulty. Hence, the like-
lihood function will locally increase by increasing the labeler ability αi if the empirical estimate of
the number of correct images labeled by labeler i (weighted by image difficulty) is greater than its
previous belief of correctness (again, weighted by difficulty). Similar intuition applies to ∂Q

∂βj
with

regards to image difficulty1.

To find locally optimal values of the α and β parameter we set the gradient to zero. The resulting
equations are non-linear and thus need to be solved using iterative methods.

2 Multi-class Inference Based on the GLAD Model

Here we briefly derive an optimal inference algorithm for the multi-class case. We assume there are
K different choices {1, . . . ,K} for each image label. We continue under the initial assumption of
GLAD as described in the main paper, which is that the probability of correct labeling is

p(Lij = k|zj = k, αi, βj) = σ(αiβj)

where σ is the logistic function. For the multi-class case, we further assume uniform probability
over all incorrect responses, i.e., for all k′ 6= k,

p(Lij = k′|zj = k, αi, βj) =
1

K − 1
(1− σ(αiβj))

The M-step is exactly the same as for the two-class case, except now the posterior probabilities
for Zj must be calculated over K classes, not just 2. For the E-step, we must modify slightly the
equations for probability of correctness and the auxiliary function: Then

p(lij |zj = k, αi, βj) = σδ(lij ,k)

(
1

K − 1
(1− σ)

)1−δ(lij ,k)

where δ(a, b) is the Kronecker delta function. For brevity we write δ(lij , k) simply as δ. Then we
can define Q as

Q =
∑

j

K∑
k=1

pk ln p(zj = k) +
∑

j

K∑
k=1

pk ln p(lij |zj = k, αi, βj)

∂Q

∂αi
=

∑
j

K∑
k=1

pk [δ(1− σ)βj − (1− δ)(σβj − ln(K − 1))]

=
∑

j

K∑
k=1

pk [δβj − δσβj − σβj + δσβj + ln(K − 1)− δ ln(K − 1)]

=
∑

j

K∑
k=1

pk [(δ − σ)βj + (1− δ) ln(K − 1)]

∂Q

∂βj
=

∑
j

K∑
k=1

pk [(δ − σ)αi + (1− δ) ln(K − 1)]

Similar to the derivation in the paper, pk(δ − σ) is positive only if lij = k and represents the differ-
ence between the prior belief that the labeler would answer correctly and the empirical correctness
of his/her response, weighted by probability that the true label is k. The expression ln(K − 1) is
0 for the two-class problem, and hence the derivation in this supplement reduces to the two-class
solution as described in the paper.

1Keep in mind that larger β means easier images.
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