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1 Inference with an OU process and a non-linear Poisson model

We write the Ornstein-Uhlenbeck (OU) process in discrete time as follows:

ut = αut−1 + θur∆t+Wt

√
∆t (1)

with α = 1 − θ∆t where Wt
iid∼ N (Wt; 0, σ2

W ) is normally distributed. So the Markov dynamics
can be written as

p(ut|ut−1) = N (ut;αut−1 + θur∆t, σ2
W∆t) (2)

Now if we assume that at time t − 1, the distribution of the membrane potential given the spiking
history in normally distributed,

p(ut−1|s1...t−1) = N (ut−1;µt−1, σ
2
t−1) (3)

then the distribution of the membrane potential at time t given the same spiking history will be also
a Gaussian:

p(ut|s1...t−1) = N (ut;αµt−1 + θur∆t︸ ︷︷ ︸
µ̃

, σ2
W∆t+ α2σ2

t−1︸ ︷︷ ︸
σ̃2

) (4)

Finally, we can write the probability density of the membrane potential given the whole past spiking
history up to time t:
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p(ut|s1...t) =
(
g(ut)
γ

)st
(

1− g(ut)∆t
1− γ∆t

)1−st

N (ut; µ̃, σ̃2) (5)

where the normalizing factor γ is given by

γ =
∫
g(ut)N (ut; µ̃, σ̃2)dut (6)

2 Optimal membrane potential estimator for exponential gain function

Let us now consider an exponential transfer function g:

g(u) = g0 exp(βu) (7)

Let us first note that the product of an exponential and a gaussian gives an unormalized gaussian:

g(ut)N (ut; µ̃, σ̃2) = g0 exp
(
βµ̃+

β2σ̃2

2

)
︸ ︷︷ ︸

γ

N (ut; µ̃+ βσ̃2, σ̃2) (8)

The expected membrane potential at time t becomes

µt =
st
γ
〈utg(ut)〉ut;µ̃,σ̃2 +

1− st
1− γ∆t

〈ut(1− g(ut)∆t)〉ut;µ̃,σ̃2

= st(µ̃+ βσ̃2) + (1− st)
(
µ̃− ∆tγβσ̃2

1− γ∆t

)
' µ̃+ βσ̃2(st − γ∆t) (9)

where the last approximation becomes exact in the limit of small ∆t. We can now rewrite the above
expression in an exact way as a differential equation (since we take the limit of small ∆t):

µ̇ = −θ(µ− ur) + βσ2(S(t)− γ)) (10)

where S(t) is a delta spike train such that

sk =
∫ (k+1)∆t

k∆t

S(t)dt (11)

In a similar way, we can write the evolution of the membrane potential variance estimator when
st = 0

σ2
t =

1
1− γ∆t

〈
u2
t (1− g(ut)∆t)

〉
ut;µ̃,σ̃2 −

1
(1− γ∆t)2

〈ut(1− g(ut)∆t)〉2ut;µ̃,σ̃2

=
1

1− γ∆t
{
σ̃2 + µ̃2 − γ∆t(σ̃2 + (µ̃+ βσ̃2)2)

}
−
(
µ̃− ∆tγβσ̃2

1− γ∆t

)2

= σ̃2 − γ∆tβ2σ̃4

(
1 +

γ∆t
(1− γ∆t)2

)
' σ̃2 − γ∆tβ2σ̃4 (12)

and when st = 1
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σ2
t =

1
γ

〈
u2
t g(ut)

〉
ut;µ̃,σ̃2 −

1
γ2
〈utg(ut)〉2ut;µ̃,σ̃2

=
〈
u2
t

〉
ut;µ̃+βσ̃2,σ̃2 − (µ̃+ βσ̃2)2

= σ̃2 (13)

all together, this gives

σ2
t = σ̃2 − γ∆tβ2σ̃4(1− st) (14)

In a differential equation form, this gives

σ̇2 = σ2
W − 2θσ2 − γβ2σ4 (15)

Note that in the limit of β = 0, the spiking information is irrelevant for the estimation of the
distribution of ut and therefore Eqs. 10 and 15 describe the evolution of the mean and variance for
an OU process. In summary our dynamical system can be written as

µ̇ = −θ(µ− ur) + βσ2(S(t)− γ) (16)

σ̇2 = −2θ
(
σ2 − σ2

OU

)
− γβ2σ4 (17)

with the normalisation factor given by

γ = g0 exp
(
βµ+

β2σ2

2

)
(18)

3 Link to Short-Term Plasticity

The dynamics of the membrane potential estimator in Eqs 16 and 17 is closely related to the dy-
namics of short-term depression (see Eq. 12) in the main text). In order to highlight this link, let us
denote by µ∞ and σ2

∞ respectively the stationary value of the mean and the variance estimator in
the absence of spike i.e. they satisfy µ̇ = 0 and σ̇2 = 0 when S(t) = 0.

Let x̂ = σ2/σ2
∞ denote the scaled variance estimator such that x̂ takes values between 0 and 1.

Indeed, the variance estimator reaches its maximal value after an infinite amount of time in the
absence of spikes. From Eq. 17, we can write:

˙̂x =
σ2
W

σ2
∞
− 2θx̂− γβ2σ2

∞x̂
2 (19)

In order to show the link between the STP resource variable x and the scaled variance x̂, let us
consider the low stimulation frequency limit. This means that the estimator variables µ and σ2

will be close to their asymptotic value µ∞ and σ2
∞. Therefore the normalisation factor γ(t) can be

approximated by

γ(t) ' γ∞ exp(β2σ2
∞H(t))

' γ∞(1 + β2σ2
∞θ
−1S(t)) (20)

where H(t) is a unit square function of duration θ−1, i.e.

H(t) =
{

1 if tspike ≤ t < tspike + θ−1

0 else (21)
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and γ∞ = g0 exp
(
βµ∞ + β2σ2

∞
2

)
. Because we are in the low frequency limit, the scaled variance

x̂ is very close to 1 and therefore we have x̂2 ' x̂ ' 1. With this approximation, we can rewrite
Eq. 19 as

˙̂x ' σ2
W

σ2
∞
− (β2σ2

∞γ∞ + 2θ)x̂− β4σ4
∞γ∞θ

−1x̂S(t)

' 1− x̂
τ̂D

− Ŷ x̂S(t) (22)

with τ̂D = (β2σ2
∞γ∞ + 2θ)−1 and Ŷ = β4σ4

∞γ∞θ
−1. The link between the estimator of the

membrane potential µ and the membrane potential v in the STP description is straightforward. Let
v̂ be the approximation of µ under the same assumptions as above. Its dynamics is given by

˙̂v = − v̂ − v̂0

τ̂
+ Ĵ Ŷ S(t) (23)

with τ̂ = θ−1, v̂0 = µ∞ and Ĵ = βσ2
∞/Ŷ = θ(γ∞β3σ2

∞)−1. For a numerical application, let us
consider the OU parameters and the NP parameters given in Fig. 1 of the main text (i.e. ur = 0 mV,
θ−1 = 100 ms, σ2

OU = 1 mV, β−1 = 1 mV, g0 = 10 Hz ). In this case, the approximated short-term
dynamics parameters yield Ĵ = 1.6, τ̂ = 100 ms, v̂0 = −0.61 mV, τ̂D = 38 ms, Ŷ = 0.47 and the
fitted parameters of the short-term dynamics give J = 4.6± 1, τ = 61± 5 ms, v0 = −0.57± 0.02
mV, τD = 74 ± 19 ms, Y = 0.22 ± 0.08 (mean ± s.e.m results of 5 independent fitting of 120 s
long spike trains). Although the match between the two sets of parameters is not perfect they still
fall in the right ball-park.

4 Derivation of the estimator performance in the slow dynamics limit

We derive here an analytical expression of the asymptotic error performed by the estimator µ (see
Eq. 16). Let this performance error be defined as

E2(t) =
〈
(µ(t)− u(t))2

〉
S,u

(24)

where 〈·〉S,u denotes the average over a double stochastic process. It first averages over the spik-
ing statistics given a membrane potential trajectory u and then it averages over the distribution of
membrane potential trajectories. In order to be tractable analytically, we have to make several as-
sumptions.

First, we will assume that we are in the slow dynamics limit (ε → 0, see section 2.2 of the main
text). So we consider the dynamics of µ given by Eq. 11 of the main text that we will recall here for
convenience:

√
γ

σW
µ̇ ' S(t)− γ (25)

Now let µ̄ = 〈µ〉S,u denote the expected value of the estimator µ. Since, we consider the ε→ 0 limit,
the variance of the estimator σ2 (see Eq. 17) scales with

√
ε and therefore we have 〈g(µ)〉 ' g(µ̄).

We can use this property to calculate the expectation of Eq. 25:

√
g(µ̄)
σW

˙̄µ ' r − g(µ̄) (26)

with r = g(ur + βσ2
OU/2). Similarly, let σ̄2 =

〈
(µ− µ̄)2

〉
S,u

denote the variance of the estimator
µ around its expected value µ̄. The time derivative of this variance σ̄2 yields
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˙̄σ2 = 2 〈µµ̇〉 − 2 〈µ〉 〈µ̇〉

= 2σW

〈
µ
S − γ
√
γ

〉
− 2σW 〈µ〉

〈
S − γ
√
γ

〉
(27)

Since, we consider the ε→ 0 limit, the variance of the estimator σ2 (see Eq. 17) scales with
√
ε and

therefore we have 〈γ(µ)〉 ' γ(µ̄). Hence, we have

√
g(µ̄)

2σW
˙̄σ2 ' 〈µ(S − γ)〉 − µ̄(r − γ)

' −g′(µ̄)σ̄2 +
rσW

2
√
g(µ̄)

(28)

where g′(u) = dg(u)/du is the derivative of the gain function. In order to get the last equation, we
used

〈µS〉 − µ̄r =
rσW
2
√
γ

(29)

and linearised the gain function around the expected value ur of the OU process:

〈µγ〉 − µ̄γ ' g′(ur)σ̄2 (30)

Asymptotically, the estimation error can be written as

E = σ̄ '
√

r̄σW

2g′(ur)
√
g(ur)

(31)
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