Know Thy Neighbour:
A Normative Theory of Synaptic Depression
Supplementary Information

Jean-Pascal Pfister
Computational & Biological Learning Lab
Department of Engineering, University of Cambridge
Trumpington Street, Cambridge CB2 1PZ, United Kingdom
jean-pascal.pfister@eng.cam.ac.uk

Peter Dayan
Gatsby Computational Neuroscience Unit, UCL
17 Queen Square, London WCIN 3AR, United Kingdom
dayan@gatsby.ucl.ac.uk

Maté Lengyel
Computational & Biological Learning Lab
Department of Engineering, University of Cambridge
Trumpington Street, Cambridge CB2 1PZ, United Kingdom
m.lengyel@eng.cam.ac.uk

1 Inference with an OU process and a non-linear Poisson model

We write the Ornstein-Uhlenbeck (OU) process in discrete time as follows:

up = aug_1 + Ou At + WiV At (D

with o = 1 — At where W, BN (Wy; 0, U‘Q/V) is normally distributed. So the Markov dynamics
can be written as

pug|us—1) = N(ug; aug_y + Ou, At, oy At) )

Now if we assume that at time ¢ — 1, the distribution of the membrane potential given the spiking
history in normally distributed,

p(ut—1|31...t—1) = N(ut—l;ut—haf_ﬂ 3)

then the distribution of the membrane potential at time ¢ given the same spiking history will be also
a Gaussian:

p(ugls1. i—1) = N(ug; app—1 + Ou At U‘%‘/At + QQUf_l) 4
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Finally, we can write the probability density of the membrane potential given the whole past spiking
history up to time ¢:



1= glu) At
p(Ut|81..,t>:(g(:t)> < 19(}:275 ) N (ug; i, 5°) (5)

where the normalizing factor ~ is given by
3= [ ot N (s .5 ©)

2 Optimal membrane potential estimator for exponential gain function

Let us now consider an exponential transfer function g:

g(u) = go exp(Bu) (7

Let us first note that the product of an exponential and a gaussian gives an unormalized gaussian:
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The expected membrane potential at time ¢ becomes
= g} e+ 1 (1~ ) A0)
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where the last approximation becomes exact in the limit of small A¢. We can now rewrite the above
expression in an exact way as a differential equation (since we take the limit of small At):

fr=—0(p—u) + Bo*(S(t) - 7)) (10)
where S(t) is a delta spike train such that
(k+1)At
o :/ S(t)dt (11
kAt

In a similar way, we can write the evolution of the membrane potential variance estimator when
St = 0
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and when s; = 1
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all together, this gives
o? =% — yAtF% (1 — s4) (14)
In a differential equation form, this gives
G2 = 0“24/ —200% — ~yp%0" (15)

Note that in the limit of 3 = 0, the spiking information is irrelevant for the estimation of the
distribution of u; and therefore Eqs. 10 and 15 describe the evolution of the mean and variance for
an OU process. In summary our dynamical system can be written as

o= —0(u—u)+ Bo*(S(t) - ) (16)
* = =20(0°—ody) — B80! (17)

with the normalisation factor given by
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7= goexp (ﬂu+ﬂ; ) (1)

3 Link to Short-Term Plasticity

The dynamics of the membrane potential estimator in Eqs 16 and 17 is closely related to the dy-
namics of short-term depression (see Eq. 12) in the main text). In order to highlight this link, let us
denote by /i, and o2, respectively the stationary value of the mean and the variance estimator in
the absence of spike i.e. they satisfy # = 0 and 6> = 0 when S(t) = 0.

Let # = 02/02, denote the scaled variance estimator such that # takes values between 0 and 1.
Indeed, the variance estimator reaches its maximal value after an infinite amount of time in the
absence of spikes. From Eq. 17, we can write:

2
b =W _ 203 — 75207 3 (19)
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In order to show the link between the STP resource variable z and the scaled variance Z, let us
consider the low stimulation frequency limit. This means that the estimator variables y and o2
will be close to their asymptotic value fio, and o2 . Therefore the normalisation factor v(t) can be
approximated by

Yoo exp(BPoZ H(t))
Yoo(1 4 B%02,0715(1)) (20)
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where H (t) is a unit square function of duration 671, i.e.

B 1 lf tspike S t < tspike + 971
H(t) = { 0 else @h
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and Y., = go exp (mtoo + ’8%) Because we are in the low frequency limit, the scaled variance
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Z is very close to 1 and therefore we have 2 ~ & ~ 1. With this approximation, we can rewrite

Eq. 19 as
2
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with 7p = (8202700 + 20) ' and Y = (%0% 7o0~'. The link between the estimator of the
membrane potential i and the membrane potential v in the STP description is straightforward. Let
© be the approximation of p under the same assumptions as above. Its dynamics is given by

U — Do

b=— +JYS(t) (23)

7

with 7 = 071, §g = poe and J = 02 /Y = 0(7503302) 1. For a numerical application, let us
consider the OU parameters and the NP parameters given in Fig. 1 of the main text (i.e. u, = 0 mV,
6= =100 ms, 03; = 1 mV, 37! = 1mV, go = 10 Hz ). In this case, the approximated short-term
dynamics parameters yield J = 1.6, 7 = 100 ms, 99 = —0.61 mV, 7p = 38 ms, Y = 0.47 and the
fitted parameters of the short-term dynamics give J = 4.6 £ 1, 7 = 61 & 5 ms, vg = —0.57 £ 0.02
mV,7p = 74 £ 19 ms, Y = 0.22 4+ 0.08 (mean + s.e.m results of 5 independent fitting of 120 s
long spike trains). Although the match between the two sets of parameters is not perfect they still
fall in the right ball-park.

4 Derivation of the estimator performance in the slow dynamics limit

We derive here an analytical expression of the asymptotic error performed by the estimator p (see
Eq. 16). Let this performance error be defined as
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E2(t) = ((u(t) —u(®))*)g,, (24)
where (-) ¢, denotes the average over a double stochastic process. It first averages over the spik-
ing statistics given a membrane potential trajectory u and then it averages over the distribution of
membrane potential trajectories. In order to be tractable analytically, we have to make several as-
sumptions.

First, we will assume that we are in the slow dynamics limit (¢ — 0, see section 2.2 of the main
text). So we consider the dynamics of i given by Eq. 11 of the main text that we will recall here for
convenience:

fuo S(t) — v (25)
ow
Now let i = (i) ¢ ,, denote the expected value of the estimator . Since, we consider the e — 0 limit,

the variance of the estimator o2 (see Eq. 17) scales with /€ and therefore we have (g(u)) ~ g(ji).
We can use this property to calculate the expectation of Eq. 25:

V(i) _ 26)

p— p~r —g(j)

with 7 = g(u, + Body/2). Similarly, let 6% = ((u — ﬁ)2>s ,, denote the variance of the estimator
1 around its expected value fi. The time derivative of this variance 72 yields
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Since, we consider the ¢ — 0 limit, the variance of the estimator o2 (see Eq. 17) scales with /€ and
therefore we have (y(u)) ~ v(fi). Hence, we have
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where ¢'(u) = dg(u)/du is the derivative of the gain function. In order to get the last equation, we
used

pS) — pr = (29)
s 2v7
and linearised the gain function around the expected value u, of the OU process:
(i) = iy = ¢/ (ur)3? (30)
Asymptotically, the estimation error can be written as
E-g~ |—0W 31)
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