
A Smoothed Approximate Linear Program:
Technical Appendix

1 Proof of Theorem 1

Lemma 1. For any r ∈ RK and θ ≥ 0:

(i) `(r, θ) is a bounded, decreasing, piecewise linear, convex function of θ.

(ii) `(r, θ) ≤ (1 + α)‖J∗ − Φr‖∞.

(iii) ∂
∂r `(r, 0) = − 1∑

x∈Ω(r)
πµ∗,ν(x) , where Ω(r) = argmaxx∈X Φr(x)− TΦr(x).

Proof. (i) Given any r, clearly γ = ‖Φr− TΦr‖∞, s = 0 is feasible for (5) so that `(r, θ) is
bounded from below. To see that the LP is bounded, suppose (s, γ) is feasible. Then, for
any x ∈ X ,

γ ≥ Φr(x)− TΦr(x)− s(x) ≥ Φr(x)− TΦr(x)− θ/πµ∗,ν(x).

Thus, the LP is bounded implying that `(r, θ) is bounded from above.
(ii) Let ε = ‖J∗ − Φr‖∞. Then,

‖TΦr − Φr‖∞ ≤ ‖J∗ − TΦr‖∞ + ‖J∗ − Φr‖∞ ≤ α‖J∗ − Φr‖∞ + ε = (1 + α)ε.

Since γ = ‖TΦr−Φr‖∞, s = 0 is feasible for (5), it follows that `(r, θ) ≤ (1+α)‖J∗−Φr‖∞.
(iii) This claim follows immediately from standard LP sensitivity analysis; we note that
Ω(r) is precisely the set of states whose constraints are binding at θ = 0. �

Lemma 2. Let (r, s) be feasible for the LP (4). Then,

Φr −∆∗s ≤ J∗,
where

∆∗ ,
∞∑

k=0
(αPµ∗)k = (I − αPµ∗)−1,

and Pµ∗ is the transition probability matrix corresponding to the optimal policy.

Proof. Note that
Φr ≤ Tµ∗Φr + s,

where Tµ∗ is the Bellman operator corresponding to the optimal policy. Repeatedly applying
Tµ∗ and using the fact that T kµ∗Φr → J∗, we obtain

Φr ≤ J∗ +
∞∑

k=0
(αPµ∗)ks = J∗ + ∆∗s.

�

Theorem 1. Let 1 be in the span of Φ and ν be a probability distribution. Let r̄ be an
optimal solution to the SALP (4). Moreover, let r∗ satisfy r∗ ∈ argminr ‖J∗ − Φr‖∞.
Then,

‖J∗ − Φr̄‖1,ν ≤ ‖J∗ − Φr∗‖∞ + l(r∗, θ) + 2θ
1− α .

Proof. First, define the weight vector r̃ ∈ RK by

Φr̃ = Φr∗ − `(r∗, θ)
1− α 1,
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and set s̃ = s(r∗, θ), the s-component of the solution to the LP (5) with parameters r∗ and
θ. We will demonstrate that (r̃, s̃) is feasible for (3). Observe that, by the definition of the
LP (5),

Φr∗ ≤ TΦr∗ + s̃+ `(r∗, θ)1.
Then,

TΦr̃ = TΦr∗ − α`(r∗, θ)
1− α 1

≥ Φr∗ − s̃− `(r∗, θ)1− α`(r∗, θ)
1− α 1

= Φr̃ + `(r∗, θ)
1− α − s̃− `(r

∗, θ)1− α`(r∗, θ)
1− α 1

= Φr̃ − s̃.

Now, by Lemma 2,
‖J∗ − Φr̄‖1,ν ≤ ‖J∗ − Φr̄ + ∆∗s̄‖1,ν + ‖∆∗s̄‖1,ν

= ν>(J∗ − Φr̄ + ∆∗s̄) + ν>∆∗s̄

= ν>(J∗ − Φr̄) +
2π>µ∗,ν s̄
1− α

≤ ν>(J∗ − Φr̄) + 2θ
1− α

≤ ν>(J∗ − Φr̃) + 2θ
1− α

≤ ‖J∗ − Φr̃‖∞ + 2θ
1− α

≤ ‖J∗ − Φr∗‖∞ + ‖Φr∗ − Φr̃‖∞ + 2θ
1− α

≤ ‖J∗ − Φr∗‖∞ + `(r∗, θ) + 2θ
1− α ,

as desired. �

2 Proof of Theorem 2

Theorem 2. Let Ψ , {y ∈ R|X | : y ≥ 1}. For every ψ ∈ Ψ, let β(ψ) = maxµ
∥∥∥Pµψψ

∥∥∥
∞

.
Then, for an optimal solution (r̄, s̄) to (6), we have:

‖J∗ − Φr̄‖1,ν ≤ inf
r,ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ + 1)(αβ(ψ) + 1)
1− α

)
.

Proof. Let r ∈ RK be arbitrary. Let εr(x) = ((Φr)(x)− (TΦr)(x))+ and ψ ∈ Ψ. Define sr
according to sr(x) = εr(x)(1− 1

ψ(x) ) and notice that 0 ≤ sr(x) ≤ εr(x).

We next make a few observations. First, define r̃r according to Φr̃r = Φr− ‖εr‖∞,1/ψ1−α 1, and
observe that by construction, (r̃r, sr) is feasible for (6). Thus,

‖Φr − Φr̃r‖∞ ≤
‖εr‖∞,1/ψ

1− α ≤ ‖TΦr − Φr‖∞,1/ψ
1− α .

Next, observe that
π>µ∗,νsr =

∑

x

πµ∗,ν(x)εr(x)(1− 1/ψ(x))

≤ π>µ∗,νεr
≤ (π>µ∗,νψ)‖εr‖∞,1/ψ
≤ (π>µ∗,νψ)‖TΦr − Φr‖∞,1/ψ
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Finally, observe that,

π>µ∗,ν(J∗ − Φr) ≤ (π>µ∗,νψ)‖J∗ − Φr‖∞,1/ψ.

Now, we have from the last set of inequalities in the proof of Theorem 1 and the above
observations:

‖J∗ − Φr̄‖1,ν ≤ ν>(J∗ − Φr̄) +
2π>µ∗,ν s̄
1− α

≤ ν>(J∗ − Φr̃r) +
2π>µ∗,νsr

1− α

≤ ν>(J∗ − Φr) + ν>(Φr − Φr̃r) +
2π>µ∗,νsr

1− α

≤ ν>(J∗ − Φr) + ‖Φr − Φr̃r‖∞ +
2π>µ∗,νsr

1− α

≤ (ν>ψ)‖J∗ − Φr‖∞,1/ψ + (2π>µ∗,νψ + 1)
‖TΦr − Φr‖∞,1/ψ

1− α

(9)

Since our choice of r and ψ were arbitrary, we have:

‖J∗ − Φr̄‖1,ν ≤ inf
r,ψ∈Ψ

(ν>ψ)‖J∗ − Φr‖∞,1/ψ+

‖TΦr − Φr‖∞,1/ψ
1− α +

2(π>µ∗,νψ)‖TΦr − Φr‖∞,1/ψ
1− α .

(10)

We now relate the Bellman error on the right hand side in the above bound to the optimal
approximation error. Before doing so we recall:

|TJ − T J̄ | ≤ αmax
u

Pu|J − J̄ |,

and derive the following intermediate result,

max
µ
‖Pµ|Φr − J∗|‖∞,1/ψ = max

µ,x∈X

(∑
y∈X Pµ(x, y)|(Φr)(y)− J∗(y)|

ψ(x)

)

= max
µ,x∈X



∑
y∈X Pµ(x, y)ψ(y) |(Φr)(y)−J∗(y)|

ψ(y)

ψ(x)




≤ max
µ,x∈X

(∑
y∈X Pµ(x, y)ψ(y)

ψ(x)

)
‖Φr − J∗‖∞,1/ψ

= max
µ

∥∥∥∥
Pµψ

ψ

∥∥∥∥
∞
‖Φr − J∗‖∞,1/ψ

= β(ψ)‖Φr − J∗‖∞,1/ψ.

Now,

‖TΦr − Φr‖∞,1/ψ ≤
(
‖TΦr − J∗‖∞,1/ψ + ‖J∗ − Φr‖∞,1/ψ

)

≤
(
αmax

µ
‖Pµ|Φr − J∗|‖∞,1/ψ + ‖J∗ − Φr‖∞,1/ψ

)

≤
(
αβ(ψ)‖Φr − J∗‖∞,1/ψ + ‖J∗ − Φr‖∞,1/ψ

)

= ‖Φr − J∗‖∞,1/ψ(αβ(ψ) + 1).(11)

Using (10) and (11), we get the result. �
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3 Sample Complexity Results: Proof of Theorem 3

Our proof will rely on the following lemma, which provides a Chernoff bound for the uniform
convergence of a certain class of functions and the proof of this lemma is based on bounding
the pseudo-dimension of this class of functions.
Lemma 3. Given a constant B > 0, define the function ζ : R→ [0, B] by

ζ(t) , max (min(t, B), 0) .
Consider a pair of random variables (Y,Z) ∈ RK × R. For each i = 1, . . . , n, let the pair(
Y (i), Z(i)) be an i.i.d. sample drawn according to the distribution of (Y,Z). Then, for all
ε ∈ (0, B],

P
(

sup
r∈RK

∣∣∣∣∣
1
n

n∑

i=1
ζ
(
r>Y (i) + Z(i)

)
− E

[
ζ
(
r>Y + Z

)]
∣∣∣∣∣ > ε

)

≤ 8
(

32eB
ε

log 32eB
ε

)K+2
exp

(
− ε2n

64B2

)
.

Moreover, given δ ∈ (0, 1), if

n ≥ 64B2

ε2

(
2(K + 2) log 16eB

ε
+ log 8

δ

)
,

then this probability is at most δ.

Before presenting the proof, we present a few definitions and intermediate results. Consider
a family F of functions from a set S to {0, 1}. Define the Vapnik-Chervonenkis (VC)
dimension dimVC(F) to be the cardinality d of the largest set {x1, x2, . . . , xd} ⊂ S satisfying:

∀e ∈ {0, 1}d, ∃f ∈ F such that ∀i, f(xi) = 1 iff ei = 1.

Now, let F be some set of real-valued functions mapping S to [0, B]. The pseudo-dimension
dimP (F) is the following generalization of VC dimension: for each function f ∈ F and
scalar c ∈ R, define a function g : S × R→ {0, 1} according to:

g(x, c) , I{f(x)−c≥0}.

Let G denote the set of all such functions. Then, we define dimP (F) , dimVC(G).
In order to prove Lemma 3, define the F to be the set of functions f : RK × R → [0, B],
where, for all x ∈ RK and y ∈ R,

f(y, z) , ζ
(
r>y + z

)
.

Here, ζ(t) , max (min(t, B), 0), and r ∈ RK is a vector that parameterizes f . We will show
that dimP (F) ≤ K + 2.
We will use the following standard result from convex geometry:
Lemma 4 (Radon’s Lemma). A set A ⊂ Rm of m + 2 points can be partitioned into two
disjoint sets A1 and A2, such that the convex hulls of A1 and A2 intersect.
Lemma 5. dimP (F) ≤ K + 2

Proof. Assume, for the sake of contradiction, that dimP (F) > K+2. It must be that there
exists a ‘shattered’ set

{(
y(1), z(1), c(1)),

(
y(2), z(2), c(2)), . . . ,

(
y(K+3), z(K+3), c(K+3))} ⊂ RK × R× R,

such that, for all e ∈ {0, 1}K+3, there exists a vector re ∈ RK with

ζ
(
r>e y

(i) + z(i)
)
≥ c(i) iff ei = 1, ∀ 1 ≤ i ≤ K + 3.
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Observe that we must have c(i) ∈ (0, B] for all i, since if c(i) ≤ 0 or c(i) > B, then no such
shattered set can be demonstrated. But if c(i) ∈ (0, B], for all r ∈ RK ,

ζ
(
r>y(i) + z(i)

)
≥ c(i) =⇒ r>e y

(i) ≥ c(i) − z(i),

and
ζ
(
r>y(i) + z(i)

)
< c(i) =⇒ r>e y

(i) < c(i) − z(i).

For each 1 ≤ i ≤ K + 3, define x(i) ∈ RK+1 component-wise according to

x
(i)
j ,

{
y

(i)
j if j < K + 1,
c(i) − z(i) if j = K + 1.

Let A = {x(1), x(2), . . . , x(K+3)} ⊂ RK+1, and let A1 and A2 be subsets of A satisfying the
conditions of Radon’s lemma. Define a vector ẽ ∈ {0, 1}K+3 component-wise according to

ẽi , I{x(i)∈A1}.

Define the vector r̃ , rẽ. Then, we have
K∑

j=1
r̃jxj ≥ xK+1, ∀ x ∈ A1,

K∑

j=1
r̃jxj < xK+1, ∀ x ∈ A2.

Now, let x̄ ∈ RK+1 be a point contained in both the convex hull of A1 and the convex hull
of A2. Such a point must exist by Radon’s lemma. By virtue of being contained in the
convex hull of A1, we must have

K∑

j=1
r̃j x̄j ≥ x̄K+1.

Yet, by virtue of being contained in the convex hull of A2, we must have
K∑

j=1
r̃j x̄j < x̄K+1,

which is impossible. �

With the above pseudo-dimension estimate, Lemma 3 follows immediately from Corollary 2
of Haussler [11, Section 4]. Armed with this Lemma, we are ready to prove Theorem 3.

Proof of Theorem 3. Define the vectors

ŝµ∗ , (Φr̂SALP − Tµ∗Φr̂SALP)+
, and ŝ , (Φr̂SALP − TΦr̂SALP)+

.

One has, via Lemma 2, that
Φr̂SALP − J∗ ≤ ∆∗ŝµ∗

Thus, as in the last set of inequalities in the proof of Theorem 1, we have

(12) ‖J∗ − Φr̂SALP‖1,ν ≤ ν>(J∗ − Φr̂SALP) +
2π>µ∗,ν ŝµ∗

1− α .

Now, let π̂µ∗,ν be the empirical measure induced by the collection of sampled states X̂ .
Given a state x ∈ X , define a vector Y (x) ∈ RK and a scalar Z(x) ∈ R according to

Y (x) , Φ(x)> − αPµ∗Φ(x)>, Z(x) , −g(x, µ∗(x)),
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so that, for any vector of weights r ∈ N ,

(Φr(x)− Tµ∗Φr(x))+ = ζ
(
r>Y (x) + Z(x)

)
.

Then,

∣∣π̂>µ∗,ν ŝµ∗ − π>µ∗,ν ŝµ∗
∣∣ ≤ sup

r∈N

∣∣∣∣∣∣
1
S

∑

x∈X̂

ζ
(
r>Y (x) + Z(x)

)
−
∑

x∈X
πµ∗,ν(x)ζ

(
r>Y (x) + Z(x)

)
∣∣∣∣∣∣
.

Applying Lemma 3, we have that

(13) P
(∣∣π̂>µ∗,ν ŝµ∗ − π>µ∗,ν ŝµ∗

∣∣ > ε
)
≤ δ.

Next, suppose (rSALP, s̄) is an optimal solution to the SALP (6). Then, with probability at
least 1− δ,

ν>(J∗ − Φr̂SALP) +
2π>µ∗,ν ŝµ∗

1− α ≤ ν>(J∗ − Φr̂SALP) +
2π̂>µ∗,ν ŝµ∗

1− α + 2ε
1− α

≤ ν>(J∗ − Φr̂SALP) +
2π̂>µ∗,ν ŝ
1− α + 2ε

1− α

≤ ν>(J∗ − ΦrSALP) +
2π̂>µ∗,ν s̄
1− α + 2ε

1− α,

(14)

where the first inequality follows from (13), and the final inequality follows from the opti-
mality of (r̂SALP, ŝ) for the sampled SALP (7).
Notice that, without loss of generality, we can assume that s̄(x) = (ΦrSALP(x) −
TΦrSALP(x))+, for each x ∈ X . Thus, 0 ≤ s̄(x) ≤ B. Applying Hoeffding’s inequality,

P
(∣∣π̂>µ∗,ν s̄− π>µ∗,ν s̄

∣∣ ≥ ε
)
≤ 2 exp

(
−2Sε2
B2

)
< 2−383δ128,

where final inequality follows from our choice of S. Combining this with (12) and (14), with
probability at least 1− δ − 2−383δ128, we have

‖J∗ − Φr̂SALP‖1,ν ≤ ν>(J∗ − ΦrSALP) +
2π̂>µ∗,ν s̄
1− α + 2ε

1− α

≤ ν>(J∗ − ΦrSALP) +
2π>µ∗,ν s̄
1− α + 4ε

1− α.

The result then follows from (9)–(11) in the proof of Theorem 2. �
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