Appendix

Lemma 1 (a) If random vector X is symmetric about 0, then AX + p is symmetric about i.
(b) If X, Y are independent and both symmetric about 0, Z = X 4+ Y is also symmetric about 0.

Proof: (a). Since X is symmetric about 0, for all y, Pr(AX +pu > pu+y) = Pr(AX > y) =
J1ag>yduy = [1_4p5ydu, = Pr(AX < —y) = Pr(AX + p < p — y). From the definition of
symmetry, we know AX + p is symmetric about p.

(b). Since X and Y are independent and both symmetric about 0, for all z, Pr(Z > z2) =
S Yagysedugduy = [dug [1y>.pduy, = [dug [1y<p—oduy = [duy [Losyi.du, =
Jduy [1p<_y_.duy, = [[144y<_.duydu, = Pr(Z < —z). From the definition of symme-
try, we know Z is symmetric about 0. |

Equation (26) in Proposition 3
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Proof: Without loss of generality, we assume p = 0, otherwise we can explicitly achieve this by
translation 2’ = x — u,t’ =t — u. We use the technique established in [13] to prove (26).

Using the strong duality property between moment problems and linear programming [13],
mMaXy(0,02)sy E[(# — )+ is equivalent to:
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1). Consider ¢ > 0.
Constraint (28) now can be simplified as:

wp’ > <p<

yop+ T3 20, - O=pst
3

yop+ L2 > 2 p >y

The first condition implies yo > 0 and the second implies y; > 0. Therefore problem (27)-(28) can
be rewritten as:
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Obviously, h(t) > 0,h/(t) > 0. The constraint (30) can be satisfied either

o yo+¢/2—1/(16y;) > 0, which means ¥ p, h'(p) > 0, or
e yo+1t/2—1/(16y;) < 0 but the minimum of ~(p) is no less than 0.

The first case amounts to:
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and the minimum is (exactly the same as that of symmetric distributions)
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For the second case, let p, = 1 1_823;1_161’”@“ be the larger minimizer of /(p), problem (29)-(20)
now becomes:
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The minimum is (thanks to Mathematica!)
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Comparing (31) and (32), we know the latter gives the minimum of problem (29)-(30).
2). Consider ¢t < 0.
Similarly, problem (27)-(28) can be rewritten as:
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Using similar procedures as when ¢ > 0, we know the minimum is:
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Combining the above two cases finishes the proof. ]
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