
Appendix: A Data-Driven Approach to Modeling
Choice

In this appendix, we give the proofs of Theorems 1, 2 and 3.

Proof of Theorem 1. Suppose, to arrive at a contradiction, assume that there exists a dis-
tribution µ over the permutations such that y = Aµ and ‖µ‖0 ≤ ‖λ‖0. Let v1, v2, . . . , vK
and u1, u2, . . . , uL denote the values that λ and µ take on their respective supports. It
follows from our assumption that L ≤ K. In addition, since λ satisfies the “signature”
condition, there exist 1 ≤ d(i) ≤ m such that yd(i) = vi, for all 1 ≤ i ≤ K. Thus, since
y = Aµ, for each 1 ≤ i ≤ K, we can write vi =

∑

j∈T (i) uj , for some T (i) ⊆ {1, 2, . . . , L}.
Equivalently, we can write v = Bu, where B is a 0 − 1 matrix of dimensions K × L. Con-
sequently, we can also write

∑k

i=1 vi =
∑L

j=1 ζjuj , where ζj are integers. This now implies

that
∑L

j=1 uj =
∑L

j=1 ζjuj since
∑K

i=1 vi =
∑L

j=1 uj = 1.

Now, there are two possibilities: either all the ζjs are > 0 or some of them are equal to zero.
In the first case, we prove that µ and λ are identical, and in the second case we arrive at a
contradiction. In the case when ζj > 0 for all 1 ≤ j ≤ L, since ∑j uj =

∑

j ζjuj , it should
follow that ζj = 1 for all 1 ≤ j ≤ L. Thus, since L ≤ K, it should be that L = K and
(u1, u2, . . . , uL) is some permutation of (v1, v2, . . . , vK). By relabeling the ujs, if required,
without loss of generality, we can say that vi = ui, for 1 ≤ i ≤ K. We have now proved
that the values of λ and µ are identical. In order to prove that they have identical supports,
note that since vi = ui and y = Aλ = Aµ, µ must satisfy the “signature” and the “linear
independence” conditions. Thus, the algorithm we proposed accurately recovers µ and λ
from y. Since the input to the algorithm is only y, it follows that λ = µ.

Now, suppose that ζj = 0 for some j. Then, it follows that some of the columns in the

B matrix are zeros. Removing those columns of B, we can write v = B̃ũ where B̃ is B
with the zero columns removed and ũ is u with ujs such that ζj = 0 removed. Let L̃ be

the size of ũ. Since at least one column was removed L̃ < L ≤ K. The condition L̃ < K
implies that the elements of vector v are not linearly independent i.e., we can find integers

ci such that
∑K

i=1 civi = 0. This is a contradiction, since this condition violates our “linear
independence” assumption. The result of the theorem now follows. �

Proof of Theorem 2. Let σ1, σ2, . . . , σK be the permutations in the support and
λ1, λ2, . . . , λK be their corresponding probabilities. Since we assumed that λ satisfies the
“signature” condition, for each 1 ≤ i ≤ K, there exists a d(i) such that yd(i) = λi. In addi-
tion, the “linear independence” condition guarantees that the condition in the “if” statement
of the algorithm is not satisfied whenever d = d(i). To see why, suppose the condition in the
“if” statement is true; then, we will have λd(i) −

∑

i∈T λi = 0. Since d(i) /∈ T , this clearly
violates the “linear independence” condition. Therefore, the algorithm correctly assigns
values to each of the λis. We now prove that the A(σ)s that are returned by the algorithm
do indeed correspond to the σis. For that, note that the condition in the “if” statement
being true implies that yd is a linear combination of a subset T of the set {λ1, λ2, . . . , λK}.
Again, the “linear independence” condition guarantees that such a subset T , if exists, is
unique. Thus, when the condition in the “if” statement is true, the only permutations with
A(σ)d = 1 are the ones in the set T . Similarly, when the condition in the “if” statement is
false, then it follows from the “signature” and “linear independence” conditions that only
for σi, A(σ)d(i) = 1. From this, we conclude that the algorithm correctly finds the true
underlying distribution. �

Proof of Theorem 3. First, we note that, irrespective of the form of observed data, the
choice model generated from the “generation model” satisfies the “linear independence”
condition with probability 1. The reason is as follows: the values λ(σi) obtained from
the generation model are i.i.d uniformly distributed over the interval [a, b]. Therefore, the
vector (λ(σ1), λ(σ2), . . . , λ(σK)) corresponds to a point drawn uniformly at random from

the hypercube [a, b]K . In addition, the set of points that satisfy
∑K

i=1 ciλ(σi) = 0 lie in a
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lower-dimensional space. Since cis are bounded, there are only finitely many such sets of
points. Thus, it follows that with probability 1, the choice model generated satisfies the
“linear independence” condition.

The conditions under which the choice model satisfies the “signature” condition depends on
the form of observed data. We consider each form separately.

1. Ranking Data: The bound of K = O(n) directly follows from Lemma 2 of [9].

2. Comparison Data: For each permutation σ, we truncate its corresponding column
vector A(σ) to a vector of length N/2 by restricting it to only the disjoint unordered
pairs: {0, 1} , {2, 3} , . . . , {N − 2, N − 1}. Denote the truncated binary vector by
A′(σ). Let Ã denote the matrix A with each column A(σ) truncated to A′(σ).
Clearly, since Ã is just a truncated form of A, it is sufficient to prove that Ã
satisfies the “signature” condition.

For brevity, let L denote N/2, and, given K permutations, let B denote the L×K
matrix formed by restricting the matrix Ã to the K permutations in the support.
Then, it is easy to see that a set ofK permutations satisfies the “signature” condition
iff there exist K rows in B such that the K ×K matrix formed by the K rows is a
permutation matrix.

Let R1, R2, . . . , RJ denote all the subsets of {1, 2, . . . ,m} with cardinalityK; clearly,
J =
(

L

K

)

. In addition, let Bj denote the K ×K matrix formed by the rows of B
that are indexed by the elements of Rj . Now, for each 1 ≤ j ≤ J , when we generate
the matrix B by choosing K permutations uniformly at random, let Ej denote the
event that the K×K matrix Bj is a permutation matrix and let E denote the event
∪jEj . We want to prove that P(E ) → 1 as N → ∞ as long as K = o(logN). Let
Xj denote the indicator variable of the event Ej , and X denote

∑

j Xj . Then, it is

easy to see that Pr(X = 0) = Pr((E )c). Thus, we need to prove that P(X = 0)→ 0
as N →∞ whenever K = o(logn). Now, note the following:

Var(X) ≥ (0− E [X])
2

P(X = 0)

It thus follows that P(X = 0) ≤ Var(X)/(E [X])2. We now evaluate E [X]. Since
Xjs are indicator variables, E [Xj ] = P(Xj = 1) = P(Ej). In order to evaluate P(Ej),
we restrict our attention to the K ×K matrix Bj . When we generate the entries
of matrix B by choosing K permutations uniformly at random, all the elements of
B will be i.i.d Be(1/2) i.e., uniform Bernoulli random variables. Therefore, there

are 2K
2

possible configurations of Bj and each of them occurs with a probability

1/2K
2

. Moreover, there areK! possibleK×K permutation matrices. Thus, P(Ej) =
K!/2K

2

. Thus, we have:

(10) E [X] =
J
∑

j=1

E [Xj ] =
J
∑

j=1

P(Ej) =
JK!

2K2
.

Since J =
(

L

K

)

, it follows from Stirling’s approximation that J ≥ LK/(eK)K .

Similarly, we can write K! ≥ KK/eK . It now follows from (10) that

(11) E [X] ≥ LK

eKKK
KK

eK
1

2K2
=
LK

e2K2K2
.

We now evaluate Var(X). Let ρ denote K!/2K
2

. Then, E [Xj ] = ρ for all 1 ≤ j ≤ J .
We can write,

Var(X) = E
[

X2
]

− E [X]
2
=

J
∑

i=1

J
∑

j=1

P(Xi = 1, Xj = 1)− J2ρ2.

Suppose |Ri∩Rj | = r. Then, the number of possible configurations of Bi and Bj is
2(2K−r)K because, since there is an overlap of r rows, there are 2K−r distinct rows
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and, of course, K columns. Since all configurations occur with the same probability,
it follows that each configuration occurs with a probability 1/2(2K−r)K , which can
also be written as 2rKρ2/(K!)2. Moreover, the number of configurations in which
both Bi and Bj are permutation matrices is equal to K!(K − r)!, since, fixing the
configuration of Bi will leave only K − r rows of Bj to be fixed.
For a fixed Ri, we now count the number of subsets Rj such that |Ri∩Rj | = r. We
construct an Rj by first choosing r rows from Ri and then choosing the rest from

{1, 2, . . . , l} \Ri. We can choose r rows from the subset Ri of K rows in
(

K

r

)

ways,

and the remaining K − r rows in
(

L−K

K−r

)

ways. Therefore, we can now write:

J
∑

j=1

P(Xi = 1, Xj = 1) =

K
∑

r=0

(

K

r

)(

L−K
K − r

)

K!(K − r)!2
rKρ2

(K!)2

≤ ρ2
K
∑

r=0

(

L

K − r

)

2rK

r!
, Using

(

L−K
K − r

)

≤
(

L

K − r

)

=

(

L

K

)

ρ2 + ρ2
K
∑

r=1

(

L

K − r

)

2rK

r!

≤ Jρ2 + ρ2LK
K
∑

r=1

(

e2K

L

)r
1

rr(K − r)K−r

The last inequality follows from Stirling’s approximation:
(

L

K−r

)

≤ (L/(K−r))K−r
and r! ≥ (r/e)r; in addition, we have used J =

(

L

K

)

. Now consider

rr(K − r)K−r = exp {r log r + (K − r) log(K − r)}
= exp {K logK −KH(r/K)}

≥ KK

2K

where H(x) is the Shannon entropy of the random variable distributed as Be(x),
defined as H(x) = −x logx − (1 − x) log(1 − x) for 0 < x < 1. The last inequality
follows from the fact that H(x) ≤ log 2 for all 0 < x < 1. Putting everything
together, we get

Var(X) =

J
∑

i=1





J
∑

j=1

P(Xi = 1, Xj = 1)



− E [X]
2

≤ J

[

Jρ2 + ρ2LK
2K

KK

K
∑

r=1

(

e2K

L

)r
]

− J2ρ2

=
Jρ22KLK

KK

K
∑

r=1

(

e2K

L

)r
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We can now write,

Pr(X = 0) ≤ Var(X)

(E [X])2

≤ 1

J2ρ2
Jρ22KLK

KK

K
∑

r=1

(

e2K

L

)r

=
1

J

2KLK

KK
e2K

L

K−1
∑

r=0

(

e2K

L

)r

≤ eKKK

LK
2KLK

KK
e2K

L

K−1
∑

r=0

(

e2K

L

)r

, Using J =

(

L

K

)

≤
(

L

eK

)K

= e
(4e)K

L

K−1
∑

r=0

(

e2K

L

)r

It now follows that for K = o(logL/ log(4e)), Pr(X = 0)→ 0 as N →∞. Since, by
definition, L = N/2, this completes the proof of the theorem.

3. Top Set Data: For this type of data, note that it is sufficient to prove that A(1)

satisfies the “signature” property with a high probability; therefore, we ignore the
comparison data and focus only on the data corresponding to the fraction of cus-
tomers that have product i as their top choice, for every product i. For brevity, we
abuse the notation and denote A(1) by A and y(1) by y. Clearly, y is of length N
and so is each column vector A(σ). Every permutation σ ranks only one product
in the first position. Hence, for every permutation σ, exactly one element of the
column vector A(σ) is 1 and the rest are zeros.

In order to obtain a bound on the support size, we reduce this problem to a balls-
and-bins setup. For that, imagine K balls being thrown uniformly at random into
N bins. In our setup, the K balls correspond to the K permutations in the support
and the N bins correspond to the N products. A ball is thrown into bin i provided
the permutation corresponding to the ball ranks product i to position 1. Our “gen-
eration model” chooses permutations independently; hence, the balls are thrown
independently. In addition, a permutation chosen uniformly at random ranks a
given product i to position 1 with probability 1/N . Therefore, each ball is thrown
uniformly at random.

In the balls-and-bins setup, the “signature” condition translates into all K balls
falling into different bins. By “Birthday Paradox” [11], theK balls falls into different

bins with a high probability provided K = o(
√
N).

This finishes the proof of the theorem. �
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