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Abstract

We consider multi-label prediction problems with large output spaces under the
assumption ofoutput sparsity– that the target (label) vectors have small support.
We develop a general theory for a variant of the popular errorcorrecting output
code scheme, using ideas from compressed sensing for exploiting this sparsity.
The method can be regarded as a simple reduction from multi-label regression
problems to binary regression problems. We show that the number of subprob-
lems need only be logarithmic in the total number of possiblelabels, making this
approach radically more efficient than others. We also stateand prove robustness
guarantees for this method in the form of regret transform bounds (in general),
and also provide a more detailed analysis for the linear prediction setting.

1 Introduction

Suppose we have a large database of images, and we want to learn to predict who or what is in any
given one. A standard approach to this task is to collect a sample of these imagesx along with
corresponding labelsy = (y1, . . . , yd) ∈ {0, 1}d, whereyi = 1 if and only if person or objecti
is depicted in imagex, and then feed the labeled sample to a multi-label learning algorithm. Here,
d is the total number of entities depicted in the entire database. Whend is very large (e.g.103,
104), the simple one-against-all approach of learning a singlepredictor for each entity can become
prohibitively expensive, both at training and testing time.

Our motivation for the present work comes from the observation that although the output (label)
space may be very high dimensional, the actual labels are often sparse. That is, in each image, only
a small number of entities may be present and there may only bea small amount of ambiguity in
who or what they are. In this work, we consider how this sparsity in the output space, oroutput
sparsity, eases the burden of large-scale multi-label learning.

Exploiting output sparsity. A subtle but critical point that distinguishes output sparsity from more
common notions of sparsity (say, in feature or weight vectors) is that we are interested in the sparsity
of E[y|x] rather thany. In general,E[y|x] may be sparse while the actual outcomey may not (e.g.if
there is much unbiased noise); and, vice versa,y may be sparse with probability one butE[y|x] may
have large support (e.g.if there is little distinction between several labels).

Conventional linear algebra suggests that we must predictd parameters in order to find the value of
thed-dimensional vectorE[y|x] for eachx. A crucial observation – central to the area of compressed
sensing [1] – is that methods exist to recoverE[y|x] from justO(k log d) measurements whenE[y|x]
is k-sparse. This is the basis of our approach.
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Our contributions. We show how to apply algorithms for compressed sensing to theoutput coding
approach [2]. At a high level, the output coding approach creates a collection of subproblems of
the form “Is the label in this subset or its complement?”, solves these problems, and then uses their
solution to predict the final label.

The role of compressed sensing in our application is distinct from its more conventional uses in data
compression. Although we do employ a sensing matrix to compress training data, we ultimately
are not interested in recovering data explicitly compressed this way. Rather, welearn to predict
compressed label vectors, and then use sparse reconstruction algorithms torecover uncompressed
labels from these predictions. Thus we are interested in reconstruction accuracy of predictions,
averaged over the data distribution.

The main contributions of this work are:

1. A formal application of compressed sensing to predictionproblems with output sparsity.

2. An efficient output coding method, in which the number of required predictions is only
logarithmic in the number of labelsd, making it applicable to very large-scale problems.

3. Robustness guarantees, in the form of regret transform bounds (in general) and a further
detailed analysis for the linear prediction setting.

Prior work. The ubiquity of multi-label prediction problems in domainsranging from multiple ob-
ject recognition in computer vision to automatic keyword tagging for content databases has spurred
the development of numerous general methods for the task. Perhaps the most straightforward ap-
proach is the well-known one-against-all reduction [3], but this can be too expensive when the num-
ber of possible labels is large (especially if applied to thepower set of the label space [4]). When
structure can be imposed on the label space (e.g.class hierarchy), efficient learning and prediction
methods are often possible [5, 6, 7, 8, 9]. Here, we focus on a different type of structure, namely
output sparsity, which is not addressed in previous work. Moreover, our method is general enough to
take advantage of structured notions of sparsity (e.g.group sparsity) when available [10]. Recently,
heuristics have been proposed for discovering structure inlarge output spaces that empirically offer
some degree of efficiency [11].

As previously mentioned, our work is most closely related tothe class of output coding method
for multi-class prediction, which was first introduced and shown to be useful experimentally in [2].
Relative to this work, we expand the scope of the approach to multi-label prediction and provide
bounds on regret and error which guide the design of codes. The loss based decoding approach [12]
suggests decoding so as to minimize loss. However, it does not provide significant guidance in the
choice of encoding method, or the feedback between encodingand decoding which we analyze here.

The output coding approach is inconsistent when classifiersare used and the underlying problems
being encoded are noisy. This is proved and analyzed in [13],where it is also shown that using a
Hadamard code creates a robust consistent predictor when reduced to binary regression. Compared
to this method, our approach achieves the same robustness guarantees up to a constant factor, but
requires training and evaluating exponentially (ind) fewer predictors.

Our algorithms rely on several methods from compressed sensing, which we detail where used.

2 Preliminaries

LetX be an arbitrary input space andY ⊂ R
d be ad-dimensional output (label) space. We assume

the data source is defined by a fixed but unknown distribution overX × Y. Our goal is to learn a
predictorF : X → Y with low expectedℓ22-errorEx‖F (x) − E[y|x]‖22 (the sum of mean-squared-
errors over all labels) using a set ofn training data{(xi, yi)}ni=1.

We focus on the regime in which the output space is very high-dimensional (d very large), but for
any givenx ∈ X , the expected valueE[y|x] of the corresponding labely ∈ Y has only a few
non-zero entries. A vector isk-sparseif it has at mostk non-zero entries.
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3 Learning and Prediction

3.1 Learning to Predict Compressed Labels

Let A : R
d → R

m be a linear compression function, wherem ≤ d (but hopefullym≪ d). We use
A to compress (i.e. reduce the dimension of) the labelsY, and learn a predictorH : X → A(Y) of
these compressed labels. SinceA is linear, we simply representA ∈ R

m×d as a matrix.

Specifically, given a sample{(xi, yi)}ni=1, we form a compressed sample{(xi, Ayi)}ni=1 and then
learn a predictorH of E[Ay|x] with the objective of minimizing theℓ22-errorEx‖H(x)−E[Ay|x]‖22.

3.2 Predicting Sparse Labels

To obtain a predictorF of E[y|x], we compose the predictorH of E[Ay|x] (learned using the com-
pressed sample) with a reconstruction algorithmR : R

m → R
d. The algorithmR maps predictions

of compressed labelsh ∈ R
m to predictions of labelsy ∈ Y in the original output space. These

algorithms typically aim to find a sparse vectory such thatAy closely approximatesh.

Recent developments in the area of compressed sensing have produced a spate of reconstruction
algorithms with strong performance guarantees when the compression functionA satisfies certain
properties. We abstract out the relevant aspects of these guarantees in the following definition.

Definition. An algorithmR is avalid reconstruction algorithm for a family of compressionfunctions
(Ak ⊂

⋃
m≥1 R

m×d : k ∈ N) and sparsity errorsperr : N × R
d → R, if there exists a function

f : N → N and constantsC1, C2 ∈ R such that: on inputk ∈ N, A ∈ Ak with m rows, and
h ∈ R

m, the algorithmR(k,A, h) returns anf(k)-sparse vector̂y satisfying

‖ŷ − y‖22 ≤ C1 · ‖h−Ay‖22 + C2 · sperr(k, y)

for all y ∈ R
d. The functionf is theoutput sparsityof R and the constantsC1 andC2 are theregret

factors.

Informally, if the predicted compressed labelH(x) is close toE[Ay|x] = AE[y|x], then the sparse
vector ŷ returned by the reconstruction algorithm should be close toE[y|x]; this latter distance
‖ŷ−E[y|x]‖22 should degrade gracefully in terms of the accuracy ofH(x) and the sparsity ofE[y|x].
Moreover, the algorithm should be agnostic about the sparsity of E[y|x] (and thus the sparsity error
sperr(k, E[y|x])), as well as the “measurement noise” (the prediction error‖H(x) − E[Ay|x]‖2).
This is a subtle condition and precludes certain reconstruction algorithm (e.g.Basis Pursuit [14])
that require the user to supply a bound on the measurement noise. However, the condition is needed
in our application, as such bounds on the prediction error (for eachx) are not generally known
beforehand.

We make a few additional remarks on the definition.

1. The minimum number of rows of matricesA ∈ Ak may in general depend onk (as well as
the ambient dimensiond). In the next section, we show how to construct suchA with close
to the optimal number of rows.

2. The sparsity errorsperr(k, y) should measure how poorlyy ∈ R
d is approximated by a

k-sparse vector.

3. A reasonable output sparsityf(k) for sparsity levelk should not be much more thank,
e.g.f(k) = O(k).

Concrete examples of valid reconstruction algorithms (along with the associatedAk, sperr, etc.) are
given in the next section.

4 Algorithms

Our prescribed recipe is summarized in Algorithms 1 and 2. Wegive some examples of compression
functions and reconstruction algorithms in the following subsections.
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Algorithm 1 Training algorithm
parameters sparsity levelk, compression

functionA ∈ Ak with m rows, regression
learning algorithmL

input training dataS ⊂ X × R
d

for i = 1, . . . ,m do
hi ← L({(x, (Ay)i) : (x, y) ∈ S})

end for
output regressorsH = [h1, . . . , hm]

Algorithm 2 Prediction algorithm
parameters sparsity levelk, compression

function A ∈ Ak with m rows, valid re-
construction algorithmR for Ak

input regressorsH = [h1, . . . , hm], test
pointx ∈ X

output ŷ = ~R(k,A, [h1(x), . . . , hm(x)])

Figure 1: Training and prediction algorithms.

4.1 Compression Functions

Several valid reconstruction algorithms are known for compression matrices that satisfy arestricted
isometry property.

Definition. A matrix A ∈ R
m×d satisfies the(k, δ)-restricted isometry property ((k, δ)-RIP), δ ∈

(0, 1), if (1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all k-sparsex ∈ R
d.

While some explicit constructions of(k, δ)-RIP matrices are known (e.g.[15]), the best guarantees
are obtained when the matrix is chosen randomly from an appropriate distribution, such as one of
the following [16, 17].

• All entries i.i.d. GaussianN(0, 1/m), with m = O(k log(d/k)).

• All entries i.i.d. BernoulliB(1/2) over{±1/
√

m}, with m = O(k log(d/k)).

• m randomly chosen rows of thed × d Hadamard matrix over{±1/
√

m}, with m =
O(k log5 d).

The hidden constants in the big-O notation depend inversely onδ and the probability of failure.

A striking feature of these constructions is the very mild dependence ofm on the ambient dimension
d. This translates to a significant savings in the number of learning problems one has to solve after
employing our reduction.

Some reconstruction algorithms require a stronger guarantee of boundedcoherenceµ(A) ≤
O(1/k), whereµ(A) defined as

µ(A) = max
1≤i<j≤d

|(A⊤A)i,j |/
√
|(A⊤A)i,i||(A⊤A)j,j |

It is easy to check that the Gaussian, Bernoulli, and Hadamard-based random matrices given
above have coherence bounded byO(

√
(log d)/m) with high probability. Thus, one can take

m = O(k2 log d) to guarantee1/k coherence. This is a factork worse than what was needed
for (k, δ)-RIP, but the dependence ond is still small.

4.2 Reconstruction Algorithms

In this section, we give some examples of valid reconstruction algorithms. Each of these algorithm
is valid with respect to the sparsity error given by

sperr(k, y) = ‖y − y(1:k)‖22 +
1

k
‖y − y(1:k)‖21

wherey(1:k) is the bestk-sparse approximation ofy (i.e. the vector with just thek largest (in mag-
nitude) coefficients ofy).

The following theorem relates reconstruction quality to approximate sparse regression, giving a
sufficient condition for any algorithm to be valid for RIP matrices.
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Algorithm 3 Prediction algorithm withR = OMP

parameters sparsity levelk, compression functionA = [a1| . . . |ad] ∈ Ak with m rows,
input regressorsH = [h1, . . . , hm], test pointx ∈ X

h← [h1(x), . . . , hm(x)]⊤ (predict compressed label vector)
ŷ ← ~0, J ← ∅, r ← h
for i = 1, . . . , 2k do

j∗ ← arg maxj |r⊤aj |/‖aj‖2 (column ofA most correlated with residualr)
J ← J ∪ {j∗} (addj∗ to set of selected columns)
ŷJ ← (AJ )†h, ŷJc ← ~0 (least-squares restricted to columns inJ)
r ← h−Aŷ (update residual)

end for
output ŷ

Figure 2: Prediction algorithm specialized with Orthogonal Matching Pursuit.

Theorem 1. LetAk = {(k + f(k), δ)-RIP matrices} for some functionf : N→ N, and letA ∈ Ak

havem rows. If for anyh ∈ R
m, a reconstruction algorithmR returns anf(k)-sparse solution

ŷ = R(k,A, h) satisfying

‖Aŷ − h‖22 ≤ inf
y∈Rd

C‖Ay(1:k) − h‖22,

then it is a valid reconstruction algorithm forAk andsperr given above, with output sparsityf and
regret factorsC1 = 2(1 +

√
C)2/(1− δ) andC2 = 4(1 + (1 +

√
C)/(1− δ))2.

Proofs are deferred to Appendix B.

Iterative and greedy algorithms. Orthogonal Matching Pursuit (OMP) [18], FoBa [19], and
CoSaMP [20] are examples of iterative or greedy reconstruction algorithms. OMP is a greedy
forward selection method that repeatedly selects a new column of A to use in fittingh (see Al-
gorithm 3). FoBa is similar, except it also incorporates backward steps to un-select columns that are
later discovered to be unnecessary. CoSaMP is also similar to OMP, but instead selects larger sets
of columns in each iteration.

FoBa and CoSaMP are valid reconstruction algorithms for RIPmatrices ((8k, 0.1)-RIP and
(4k, 0.1)-RIP, respectively) and have linear output sparsity (8k and2k). These guarantees are ap-
parent from the cited references. For OMP, we give the following guarantee.

Theorem 2. If µ(A) ≤ 0.1/k, then afterf(k) = 2k steps of OMP, the algorithm returnŝy satisfying

‖Aŷ − h‖22 ≤ 23‖Ay(1:k) − h‖22 ∀y ∈ R
d.

This theorem, combined with Theorem 1, implies that OMP is valid for matricesA with µ(A) ≤
0.1/k and has output sparsityf(k) = 2k.

ℓ1 algorithms. Basis Pursuit (BP) [14] and its variants are based on finding the minimumℓ1-norm
solution to a linear system. While the basic form of BP is ill-suited for our application (it requires
the user to supply the amount of measurement error‖Ay − h‖2), its more advanced path-following
or multi-stage variants may be valid [21].

5 Analysis

5.1 General Robustness Guarantees

We now state our main regret transform bound, which follows immediately from the definition of a
valid reconstruction algorithm and linearity of expectation.

Theorem 3 (Regret Transform). Let R be a valid reconstruction algorithm for{Ak : k ∈ N} and
sperr : N × R

d → R. Then there exists some constantsC1 andC2 such that the following holds.
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Pick anyk ∈ N, A ∈ Ak with m rows, andH : X → R
m. LetF : X → R

d be the composition of
R(k,A, ·) andH, i.e.F (x) = R(k,A,H(x)). Then

Ex‖F (x)− E[y|x]‖22 ≤ C1 · Ex‖H(x)− E[Ay|x]‖22 + C2 · sperr(k, E[y|x]).

The simplicity of this theorem is a consequence of the careful composition of the learned predictors
with the reconstruction algorithm meeting the formal specifications described above.

In order compare this regret bound with the bounds afforded by Sensitive Error Correcting Output
Codes (SECOC) [13], we need to relateEx‖H(x)−E[Ay|x]‖22 to the average scaled mean-squared-
error over all induced regression problems; the error is scaled by the maximum differenceLi =
maxy∈Y(Ay)i −miny(Ay)i between induced labels:

r̄ =
1

m

m∑

i=1

Ex

(
H(x)i − E[(Ay)i|x]

Li

)2

.

In k-sparse multi-label problems, we haveY = {y ∈ {0, 1}d : ‖y‖0 ≤ k}. In these terms, SECOC
can be tuned to yieldEx‖F (x)− E[y|x]‖22 ≤ 4k2 · r̄ for generalk.

For now, ignore the sparsity error. For simplicity, letA ∈ R
m×d with entries chosen i.i.d. from the

Bernoulli B(1/2) distribution over{±1/
√

m}, wherem = O(k log d). Then for anyk-sparsey,
we have‖Ay‖∞ ≤ k/

√
m, and thusLi ≤ 2k/

√
m for eachi. This gives the bound

C1 · Ex‖H(x)− E[Ay|x]‖22 ≤ 4C1 · k2 · r̄,
which is within a constant factor of the guarantee afforded by SECOC. Note that our reduction
induces exponentially (ind) fewer subproblems than SECOC.

Now we consider the sparsity error. In the extreme casem = d, E[y|x] is allowed to be fully
dense (k = d) and sperr(k, E[y|x]) = 0. Whenm = O(k log d) < d, we potentially incur an
extra penalty insperr(k, E[y|x]), which relates how farE[y|x] is from beingk-sparse. For example,
supposeE[y|x] has smallℓp norm for0 ≤ p < 2. Then even ifE[y|x] has full support, the penalty
will decrease polynomially ink ≈ m/ log d.

5.2 Linear Prediction

A danger of using generic reductions is that one might createa problem instance that is even harder
to solve than the original problem. This is an oft cited issuewith using output codes for multi-
class problems. In the case of linear prediction, however, the danger is mitigated, as we now show.
Suppose, for instance, there is a perfect linear predictor of E[y|x], i.e. E[y|x] = B⊤x for some
B ∈ R

p×d (hereX = R
p). Then it is easy to see thatH = BA⊤ is a perfect linear predictor of

E[Ay|x]:
H⊤x = AB⊤x = AE[y|x] = E[Ay|x].

The following theorem generalizes this observation to imperfect linear predictors for certain well-
behavedA.
Theorem 4. SupposeX ⊂ R

p. LetB ∈ R
p×d be a linear function with

Ex

∥∥B⊤x− E[y|x]
∥∥2

2
= ǫ.

Let A ∈ R
m×d have entries drawn i.i.d. fromN(0, 1/m), and letH = BA⊤. Then with high

probability (over the choice ofA),

Ex‖H⊤x−AE[y|x]‖22 ≤
(
1 + O(1/

√
m)
)
ǫ.

Remark 5. Similar guarantees can be proven for the Bernoulli-based matrices. Note thatd does not
appear in the bound, which is in contrast to the expected spectral norm ofA: roughly1+O(

√
d/m).

Theorem 4 implies that the errors ofany linear predictor are not magnified much by the compres-
sion function. So a good linear predictor for the original problem implies an almost-as-good linear
predictor for the induced problem. Using this theorem together with known results about linear
prediction [22], it is straightforward to derive sample complexity bounds for achieving a given error
relative to that of the best linear predictor in some class. The bound will depend polynomially ink
but only logarithmically ind. This is cosmetically similar to learning bounds for feature-efficient
algorithms (e.g.[23, 22]) which are concerned with sparsity in the weight vector, rather than in the
output.
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6 Experimental Validation

We conducted an empirical assessment of our proposed reduction on two labeled data sets with large
label spaces. These experiments demonstrate the feasibility of our method – a sanity check that the
reduction does in fact preserve learnability – and compare different compression and reconstruction
options.

6.1 Data

Image data.1 The first data set was collected by the ESP Game [24], an onlinegame in which
players ultimately provide word tags for a diverse set of webimages.

The set contains nearly68000 images, with about22000 unique labels. We retained just the1000
most frequent labels: the least frequent of these occurs39 times in the data, and the most frequent
occurs about12000 times. Each image contains about four labels on average. We used half of the
data for training and half for testing.

We represented each image as a bag-of-features vector in a manner similar to [25]. Specifically, we
identified1024 representative SURF features points [26] from10 × 10 gray-scale patches chosen
randomly from the training images; this partitions the space of image patches (represented with
SURF features) into Voronoi cells. We then built a histogramfor each image, counting the number
of patches that fall in each cell.

Text data.2 The second data set was collected by Tsoumakas et al. [11] from del.icio.us, a
social bookmarking service in which users assign descriptive textual tags to web pages.

The set contains about16000 labeled web page and983 unique labels. The least frequent label
occurs21 times and the most frequent occurs almost6500 times. Each web page is assigned19
labels on average. Again, we used half the data for training and half for testing.

Each web page is represented as a boolean bag-of-words vector, with the vocabulary chosen using a
combination of frequency thresholding andχ2 feature ranking. See [11] for details.

Each binary label vector (in both data sets) indicates the labels of the corresponding data point.

6.2 Output Sparsity

We first performed a bit of exploratory data analysis to get a sense of how sparse the target in our
data is. We computed the least-squares linear regressorB̂ ∈ R

p×d on the training data (without any
output coding) and predicted the label probabilitiesp̂(x) = B̂⊤x on the test data (clipping values
to the range[0, 1]). Usingp̂(x) as a surrogate for the actual targetE[y|x], we examined the relative
ℓ22 error of p̂ and its bestk-sparse approximationǫ(k, p̂(x)) =

∑d
i=k+1 p̂(i)(x)2/‖p̂(x)‖22, where

p̂(1)(x) ≥ . . . ≥ p̂(d)(x).

ExaminingExǫ(k, p̂(x)) as a function ofk, we saw that in both the image and text data, the fall-
off with k is eventually super-polynomial, but we are interested in the behavior for smallk where it
appears polynomialk−r for somer. Aroundk = 10, we estimated an exponent of0.50 for the image
data and0.55 for the text data. This is somewhat below the standard of whatis considered sparse
(e.g.vectors with smallℓ1-norm showk−1 decay). Thus, we expect the reconstruction algorithms
will have to contend with the sparsity error of the target.

6.3 Procedure

We used least-squares linear regression as our base learning algorithm, with no regularization on the
image data and withℓ2-regularization with the text data (λ = 0.01) for numerical stability. We did
not attempt any parameter tuning.

1http://hunch.net/∼learning/ESP-ImageSet.tar.gz
2http://mlkd.csd.auth.gr/multilabel.html
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The compression functions we used were generated by selectingm random rows of the1024×1024
Hadamard matrix, form ∈ {100, 200, 300, 400}. We also experimented with Gaussian matrices;
these yielded similar but uniformly worse results.

We tested the greedy and iterative reconstruction algorithms described earlier (OMP, FoBa, and
CoSaMP) as well as a path-following version of Lasso based onLARS [21]. Each algorithm was
used to recover ak-sparse label vector̂yk from the predicted compressed labelH(x), for k =
1, . . . , 10. We measured theℓ22 distance‖ŷk − y‖22 of the prediction to the true test labely. In
addition, we measured the precision of the predicted support at various values ofk using the10-
sparse label prediction. That is, we ordered the coefficients of each10-sparse label prediction̂y10

by magnitude, and measured the precision of predicting the first k coordinates| supp(ŷ10
(1:k)) ∩

supp(y)|/k. Actually, fork ≥ 6, we used̂y2k instead of̂y10.

We used correlation decoding (CD) as a baseline method, as itis a standard decoding method for
ECOC approaches. CD predicts using the topk coordinates inA⊤H(x), ordered by magnitude. For
mean-squared-error comparisons, we used the least-squares approximation ofH(x) using thesek
columns ofA. Note that CD is not a valid reconstruction algorithm whenm < d.

6.4 Results

As expected, the performance of the reduction, using any reconstruction algorithm, improves as the
number of induced subproblemsm is increased (see figures in Appendix A) Whenm is small and
A 6∈ AK , the reconstruction algorithm cannot reliably choosek ≥ K coordinates, so its perfor-
mance may degrade after this point by over-fitting. But when the compression functionA is inAK

for a sufficiently largeK, then the squared-error decreases as the output sparsityk increases up to
K. Note the fact that precision-at-k decreases ask increases is expected, as fewer data will have at
leastk correct labels.

All of the reconstruction algorithms at least match or out-performed the baseline on the mean-
squared-error criterion, except whenm = 100. WhenA has few rows, (1)A ∈ AK only for very
smallK, and (2) many of its columns will have significant correlation. In this case, when choosing
k > K columns, it is better to choose correlated columns to avoid over-fitting. Both OMP and
FoBa explicitly avoid this and thus do not fare well; but CoSaMP, Lasso, and CD do allow selecting
correlated columns and thus perform better in this regime.

The results for precision-at-k are similar to that of mean-squared-error, except that choosing corre-
lated columns does not necessarily help in the smallm regime. This is because the extra correlated
columns need not correspond to accurate label coordinates.

In summary, the experiments demonstrate the feasibility and robustness of our reduction method for
two natural multi-label prediction tasks. They show that predictions of relatively few compressed
labels are sufficient to recover an accurate sparse label vector, and as our theory suggests, the ro-
bustness of the reconstruction algorithms is a key factor intheir success.
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A Figures from Experimental Results

In each plot, the top set of lines corresponds tom = 100, and the bottom set tom = 200. At
m = 300, 400, the performance is nearly the same as one-against-all,i.e. m = 1024, so we omit
these plots.

Mean-squared-error versus output sparsityk, m ∈ {100, 200}, image data.
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Mean-squared-error versus output sparsityk, m ∈ {100, 200}, text data.
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Mean precision-at-k versus output sparsityk, m ∈ {100, 200}, image data.
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Mean precision-at-k versus output sparsityk, m ∈ {100, 200}, text data.
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B Proofs

B.1 Proof of Theorem 1

Let ℓ = k + f(k), y ∈ R
d, and assume without loss of generality that|y1| ≥ . . . ≥ |yd|. We need to

show that

‖ŷ − y‖22 ≤ C1 · ‖Ay − h‖22 + C2 · (‖∆‖22 + k−1‖∆‖21)
where∆ = y − y(1:k). Using the triangle inequality, the(ℓ, δ)-RIP of A ∈ Ak, and the hypothesis
that‖Aŷ − h‖22 ≤ C‖Ay(1:k) − h‖22, we have

‖ŷ − y‖2 ≤ ‖ŷ − y(1:k)‖2 + ‖∆‖2
≤ (1− δ)−1/2‖Aŷ −Ay(1:k)‖2 + ‖∆‖2
≤ (1− δ)−1/2

(
‖Aŷ − h‖2 + ‖h−Ay(1:k)‖2

)
+ ‖∆‖2

≤ (1− δ)−1/2(1 +
√

C)‖Ay(1:k) − h‖2 + ‖∆‖2
≤ (1− δ)−1/2(1 +

√
C) (‖Ay − h‖2 + ‖A∆‖2) + ‖∆‖2. (1)

We need to relate‖A∆‖2 to‖∆‖2 and‖∆‖1. Write∆ =
∑

i≥0 yJi
, whereJi = {k+iℓ+1, . . . , k+

(i + 1)ℓ} andyJ ∈ R
d is the vector whosejth component isyj if j ∈ J and is0 otherwise. Note

that eachyJi
is ℓ-sparse,‖yJi+1

‖1 ≤ ‖yJi
‖1, and‖yJi+1

‖∞ ≤ ℓ−1‖yJi
‖1. By Hölder’s inequality,

‖yJi+1
‖2 ≤ (‖yJi+1

‖∞‖yJi+1
‖1)1/2 ≤ (ℓ−1‖yJi

‖21)1/2 = ℓ−1/2‖yJi
‖1,

and so
∑

i≥0

‖yJi
‖2 ≤ ‖yJ0

‖2 +
∑

i≥0

‖yJi+1
‖2 ≤ ‖yJ0

‖2 + ℓ−1/2
∑

i≥0

‖yJi
‖1 ≤ ‖∆‖2 + ℓ−1/2‖∆‖1.

By the triangle inequality and the(ℓ, δ)-RIP ofA, we have

‖A∆‖2 ≤
∑

i≥0

‖AyJi
‖2 ≤

∑

i≥0

(1 + δ)1/2‖yJi
‖2 ≤ (1 + δ)1/2(‖∆‖2 + ℓ−1/2‖∆‖1).

Combining this final inequality with (1) gives

‖ŷ − y‖2 ≤ C0 · ‖Ay − h‖2 + (1 + C0(1 + δ)1/2) · (‖∆‖2 + ℓ−1/2‖∆‖1)

whereC0 = (1−δ)−1/2(1+
√

C). Now squaring both sides and simplifying using the fact(x+y)2 ≤
2x2 + 2y2 concludes the proof.
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B.2 Proof of Theorem 2

We first begin with two simple lemmas.

Lemma 6. Suppose OMP is run fork iterations starting withy(0) = ~0, and produces intermediate
solutionsy(1), y(2), . . . , y(k). Then there exists some0 ≤ i < k such that ifji is the column selected
in stepi, then(a⊤

ji
(h−Ay(i)))2 ≤ ‖h‖22/k.

Proof. Let r(i) = h− Ay(i). Suppose columnji is added toJ in stepi. Let ỹ(i+1) = y(i) + αieji
,

whereαi = a⊤
ji

r(i) andeji
is thejith elementary vector. Then

‖r(i)‖22 − ‖r(i+1)‖22 ≥ ‖r(i)‖22 − ‖h−Aỹ(i+1)‖22 = ‖r(i)‖22 − ‖h−A(y(i) + αieji
)‖22

= ‖r(i)‖22 − ‖r(i) − αiaji
‖22 = 2αia

⊤
ji

r(i) − α2
i ‖aji

‖22 = (a⊤
ji

r(i))2.

Moreover,
∑k−1

i=0 ‖r(i)‖22 − ‖r(i+1)‖22 = ‖r(0)‖22 − ‖r(k)‖22 ≤ ‖h‖22, so there is somei ∈
{0, 1, . . . , k − 1} such that(a⊤

ji
r(i))2 ≤ ‖r(i)‖22 − ‖r(i+1)‖22 ≤ ‖h‖22/k.

Lemma 7. If y ∈ R
d is k-sparse andµ(A) ≤ δ/(k − 1), then‖Ay‖22 ≥ (1− δ)‖y‖22.

This result also appears in Appendix A1 of [27]. We reproducethe proof here.

Proof. Expanding‖Ay‖22, we have

‖Ay‖22 =

k∑

i=1

‖ai‖2y2
i +

∑

i6=j

yiyj(a
⊤
i aj) ≥ ‖y‖22 −

∣∣∣∣∣∣

∑

i6=j

yiyj(a
⊤
i aj)

∣∣∣∣∣∣
,

so we need to show this latter summation is at mostδ‖y‖22. Indeed,
∣∣∣∣∣∣

∑

i6=j

yiyj(a
⊤
i aj)

∣∣∣∣∣∣
≤
∑

i6=j

|yiyj ||a⊤
i aj | (triangle inequality)

≤ µ(A)
∑

i6=j

|yiyj | (definition of coherence)

= µ(A)




k∑

i=1

k∑

j=1

|yi||yj | −
k∑

i=1

y2
i




= µ(A)



(

k∑

i=1

|yi|
)2

− ‖y‖22




≤ µ(A)(k‖y‖22 − ‖y‖22) (Cauchy-Schwarz)

= µ(A)(k − 1)‖y‖22
≤ δ‖y‖22 (assumption onµ(A))

which concludes the proof.

We are now ready to prove Theorem 2. Without loss of generality, we assume that the columns
of A = [a1| . . . |ad] are normalized (so‖aj‖2 = 1) and that the support ofy is (some subset of)
{1, . . . , k} (soy is k-sparse).

In addition to the vector̂y returned by OMP and the vectory we want to compare to, we consider
two other solution vectors:

• y′: a (2k − 1)-sparse solution obtained by running up tok − 1 iterations of OMP starting
from y. Lemma 6 implies that there exists such a vectory′ with the following property: if
j∗ is the column OMP would select when the current solution isy′, then

(a⊤
j∗(h−Ay′))2 ≤ ‖h−Ay‖22/k. (2)
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Sincey′ is obtained by starting withy, it can only have smaller squared-error thany. With-
out loss of generality, let the support ofy′ be (some subset of){1, . . . , 2k}.
• ŷ′: the actual solution produced by OMP (starting from~0) just before OMP chooses a

columnj 6∈ supp(y′). Note that if OMP never chooses a columnj 6∈ supp(y′) within 2k
steps, then‖Aŷ − h‖22 ≤ ‖Aŷ′ − h‖22 ≤ ‖Ay − h‖22 and the theorem is proven. Therefore
we assume that this event does occurs and soŷ′ is defined. Sincêy′ precedes the final
solutionŷ returned by OMP, it can only have larger squared-error thanŷ.

We will bound‖h−Aŷ‖2 as follows:

‖h−Aŷ‖2 ≤ ‖h−Aŷ′‖2 (sinceŷ′ precedeŝy)

≤ ‖h−Ay′‖2 + ‖A(ŷ′ − y′)‖2 (triangle inequality)

≤ ‖h−Ay‖2 + ‖A(ŷ′ − y′)‖2. (sincey precedesy′)

We thus need to bound‖A(ŷ′ − y′)‖2 in terms of‖h−Ay‖2.

Let r̂ = h−Aŷ′ andr = h−Ay′. Then

‖A(ŷ′ − y′)‖22 = (Aŷ′ −Ay′)⊤A(ŷ′ − y′)

= (h−Ay′)⊤A(ŷ′ − y′)− (h−Aŷ′)⊤A(ŷ′ − y′)

≤ ‖h−Ay′‖2‖A(ŷ′ − y′)‖2 + |(h−Aŷ′)⊤A(ŷ′ − y′)| (Cauchy-Schwarz)

= ‖r‖2‖A(ŷ′ − y′)‖2 + |r̂⊤A(ŷ′ − y′)|.
Using the factx ≤ b

√
x+c⇒ x ≤ (4/3)(b2 +c) (which in turn follows from the quadratic formula

and the fact2xy ≤ x2 + y2), the above inequality implies

3

4
‖A(ŷ′ − y′)‖22 ≤ ‖r‖22 + |r̂⊤A(ŷ′ − y′)|. (3)

We now work on bounding the second term on the righthand side.Let j > 2k be the column chosen
by OMP when the current solution iŝy′. Then we have

|a⊤
j r̂| ≥ |a⊤

ℓ r̂| ∀ℓ ≤ 2k. (4)

Also, sinceŷ′ − y′ has support{1, . . . , 2k}, we have that

A(ŷ′ − y′) = A{1:2k}(ŷ
′ − y′) (5)

whereA{1:2k} is the same asA except with zeros in all but the first2k columns. Then,

|r̂⊤A(ŷ′ − y′)| = |r̂⊤A{1:2k}(ŷ
′ − y′)| (Equation (5))

≤ ‖r̂⊤A{1:2k}‖∞‖ŷ′ − y′‖1 (Hölder’s inequality)

≤ |a⊤
j r̂|‖ŷ′ − y′‖1 (Inequality (4))

≤
(
|a⊤

j r|+ |a⊤
j A(ŷ′ − y′)|

)
‖ŷ′ − y′‖1 (triangle inequality)

≤
(
|a⊤

j r|+ ‖a⊤
j A{1:2k}‖∞‖ŷ′ − y′‖1

)
‖ŷ′ − y′‖1 (Equation (5) and Ḧolder)

≤ |a⊤
j r|‖ŷ′ − y′‖1 + µ(A)‖ŷ′ − y′‖21 (definition of coherence)

≤ 5k

2
(a⊤

j r)2 +
1

10k
‖ŷ′ − y′‖21 + µ(A)‖ŷ′ − y′‖21 (sincexy ≤ (x2 + y2)/2)

≤ 5k

2
(a⊤

j r)2 +
1

5k
‖ŷ′ − y′‖21 (sinceµ(A) ≤ 0.1/k)

≤ 5k

2
(a⊤

j r)2 +
1

5k
(2k‖ŷ′ − y′‖22) (Cauchy-Schwarz)

≤ 5k

2
(a⊤

j r)2 +
1

2
‖A(ŷ′ − y′)‖22. (Lemma 7)

Continuing from Inequality (3), we have

‖A(ŷ′ − y′)‖22 ≤ 4‖r‖22 + 10k(a⊤
j r)2.
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Since(a⊤
j r)2 ≤ (a⊤

j∗r)
2, wherej∗ ≤ 2k is the column that OMP would select when the current

solution isy′, and since(a⊤
j∗r)

2 ≤ ‖h−Ay‖22/k (by Inequality (2)), we have that

‖A(ŷ′ − y′)‖22 ≤ 4‖r‖22 + 10‖h−Ay‖22
≤ 14‖h−Ay‖22.

Therefore,

‖h−Aŷ′‖2 ≤ (1 +
√

14)‖h−Ay‖2.
Squaring both sides gives the conclusion.

B.3 Proof of Theorem 4

We use the following Chernoff bound for sums ofχ2 random variables, a proof of which can be
found in the Appendix A of [28].

Lemma 8. Fix anyλ1 ≥ . . . ≥ λD > 0, and letX1, . . . ,XD be i.i.d.χ2 random variables with
one degree of freedom. ThenPr[

∑D
i=1 λiXi > (1 + γ)

∑D
i=1 λi] ≤ exp(−(Dγ2/24) · (λ/λ1)) for

any0 < γ < 1, whereλ = (λ1 + . . . + λD)/D.

Write A = (1/
√

m)[θ1| · · · |θm]⊤, where eachθi is an independentd-dimensional Gaussian random
vectorN(0, Id). Definevx = B⊤x−E[y|x] soǫ = Ex‖vx‖22, and assume without loss of generality
thatvx has fulld-dimensional support. Using this definition and linearity of expectation, we have

Ex‖Avx‖22 =
1

m
Ex

m∑

i=1

(θ⊤i vx)2 =
1

m

m∑

i=1

θ⊤i (Exvxv⊤
x )θi.

Our goal is to show that this quantity is(1 + O(1/
√

m))ǫ with high probability. SinceN(0, Id) is
rotationally invariant andExvxv⊤

x is symmetric and positive definite, we may assumeExvxv⊤
x is

diagonal and has eigenvaluesλ1 ≥ . . . ≥ λd > 0. Then, the above expression simplifies to

1

m

m∑

i=1

θ⊤i (Exvxv⊤
x )θi =

1

m

m∑

i=1

d∑

j=1

λjθ
2
ij .

Eachθ2
ij is a χ2 random variable with one degree of freedom, soEθ2

ij = 1. Thus, the expected

value of the above quantity is
∑d

j=1 trace(Exvxv⊤
x ) = Ex trace(vxv⊤

x ) = Ex‖vx‖22. Now applying
Lemma 8, withD = md variables andλ = (λ1 + . . . + λd)/d, we havePr[(1/m)

∑
i,j λjθ

2
ij >

(1 + t)ǫ] ≤ exp(−(mdt2/24)(λ/λ1)) ≤ exp(−mt2/24) (using the factλ1 ≤ dλ). This bound isδ
whent =

√
(24/m) ln(1/δ).
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