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Figure S1. Examples of human microneurography recordings. Spike waves across 42 afferents
evoked by 9 distinct tactile stimuli. The contact parameters are the curvature C, the force amplitude
F, the orientation O and the angle A.
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Figure S2. Example of intra- and inter-stimulus distances DV P (red and blue curves, respectively)
over time for a VP cost parameter CV P = 1.2. The optimal discrimination condition is never met:
the distributions of intra- and inter-stimulus distances always overlap (right plot).
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Figure S3. (A) Information I∗(R;S) and conditional entropy H∗(R|S) over time when using a
classical STDP rule to train a CN network of 50 cells. The 81 tactile stimuli are presented 100 times
each. Optimal discrimination is reached within 35 ms of the first afferent spike. (B) Distribution of
CN synaptic weights after learning. 98% of the weights are set to 1 after traning.
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A.1 Neuronal model

Single unit discharges at the level of the cuneate nucleus (CN) were modeled based on the spike-
response model (SRM). The SRM formalism provides a linear probabilistic neuronal model, as
opposed to the more classical integrate-and-fire model which is non-linear and deterministic. Com-
pared to the Hodgkin-Huxley formalism, the SRM permits a higher transparency and controllability
of all free parameters (e.g. synaptic integration time constant, amplitude and shape of excitatory
post-synaptic potentials, and so on).

Let V denote the membrane potential of a SRM unit. If an input spike arrives at time t, the membrane
potential undergoes a depolarization ∆V (t) whose time-course is stereotyped and taken as:

∆V (t) ∝
√
t exp(−t/τ) (5)

where the free parameter τ determines the decay time constant of the EPSP (excitatory post-synaptic
potential) of the neuron. We took τ = 7ms in our simulations.

If several afferent spikes excite the neuron within a short time window, then the EPSPs add linearly:

V (t) = Vr +
∑
i,j

wi ∆V (t− t̂ji ) (6)

where i denotes the pre-synaptic neurons, j indexes the spikes emitted by a pre-synaptic neuron
i at times t̂ji , Vr = −65mV is the resting potential, and wi indicates the synaptic weight of the
projection from the pre-synaptic unit i, and it is defined as:

wi = W · w0,1
i (7)

where the factor W is the upper bound of the synaptic efficacy, and w0,1
i is constrained within the

range [0, 1]. W was set to 20 mV in our simulations.

At each time step, a function g(t) – that can be thought of as the instantaneous firing rate of the cell
– is computed according to:

g(t) = r0 log
(

1 + exp(
V (t)− V0

Vf
)
)

(8)

where the constants r0 = 1Hz, V0 = −60mV , Vf = 0.5mV are the spontaneous firing rate, the
probabilistic threshold potential, and a gain factor, respectively.

The refractoriness property of the cell is modeled as a function A(t):

A(t) =
(t− t̂− τabs)2

τ2
rel + (t− t̂− τabs)2

θ(t− t̂− τabs) (9)

where τabs and τrel are the absolute and relative refractory periods, respectively, t̂ is the time of the
last spike emitted, and θ(t) is the Heaviside function. We used τabs = 6ms and τrel = 1ms. The
functions g(t) and A(t) permit the probability of firing p(t) to be calculated:

p(t) = 1− exp(−g(t)A(t)) (10)

All the simulations were carried out by using a time step of 1ms.

A.2 Plasticity rule

Conceptually, the learning principle implements a simple gradient rule, such that changes in the
input weights increase the mutual information (MI) transmitted by the post-synaptic neuron:

dwi(t)
dt

=
∂MI(t)
∂wi

(11)

where wi denotes the synaptic weight of an afferent projection from a cell i.

The weight change is computed as:

dwi(t)
dt

= αCi(t)Bpost(t) (12)
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where α is a gain factor that decreases linearly with time, the function Ci(t) expresses correlations
between the pre-synaptic and post-synaptic activities, and the function Bpost(t) accounts for post-
synaptic activity. The function Ci(t) is defined according to:

dCi(t)
dt

= −Ci(t)
τC

+
∑
j

∆V (t− t̂ji )
g′(V (t))
g(V (t))

[δ(t− t̂)− g(V (t))A(t)] (13)

where j indexes the spikes emitted by a pre-synaptic neuron i at times t̂ji , and the Dirac function δ(t−
t̂) indicates the timing of the post-synaptic spikes. Therefore, Ci(t) is an exponentially decaying
function, with a time constant τC , that undergoes changes (positive or negative) every time there are
correlations between pre- and post-synaptic discharges.

Finally, the function Bpost(t), which is the second term in the learning rule (Eq. 12), is taken as:

Bpost(t) = δ(t− t̂) log
(
g(V (t))
ḡ(t)

)
−A(t)[g(V (t))− ḡ(t)] (14)

and is a sum of a term that is almost always nil except when a post-synaptic spike is emitted (denoted
by the δ(t−t̂)), and a term that is almost always non-zero depending on the value of the instantaneous
firing rate g with respect to its mean ḡ.

A.3 Supplementary results based on classical STDP to modify CN synapses

Here, we present the results obtained by running similar simulations than those used to produce
Fig. 4 but with a classical STDP rule [1] instead of the plasticity rule used in the main body (Secs. 2.2
and A.2) [20].

The synaptic weights wi of the mechanoreceptor-CN projections are initialized randomly (uniform
distribution between [0, 1]) and then changed according to:

∆wi =

 A · exp( tpre−tpost

τ ) tpre − tpost < 0

A · exp( tpost−tpre

τ ) tpre − tpost > 0
(15)

where A = 0.1 and τ = 7 ms.

Figure S3A shows the results, in terms of information I∗(R;S) and conditional entropy H∗(R|S),
of tactile discrimination downstream from a network of 50 CN neurons after training (100 presenta-
tions of the sequence of 81 tactile stimuli). Interestingly, the time-course of I∗(R;S) and H∗(R|S)
is very similar to that on Fig. 4A, meaning that under the constraints governing the connectivity
layout of the mechanoreceptor-CN projections (see Sec. 2.2), the classical STDP rule succeeds in
optimizing information transfer as rapidly as the rule developed by Toyoizumi et al. 2005 [20],
which maximizes information transmission explicitly. By contrast, the two learning rules produce
significantly different distributions of synaptic weights after training (Fig. S3B vs. Fig. 4B): classi-
cal STDP tends to set the majority (98%) of weights to 1, whereas the Toyoizumi et al.’s rule leads
to a bimodal distribution with peaks at 0 (silent synapses) and 1.
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