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In this document we report some of the calculations and groofitted from the main paper. Refer-
ences to equations and theorems in the main paper are irabeldf

1 Thresholding algorithm
In the following we letC;; = Eq g{z;2;} where expectation is taken with respect to the Ising model
().

Before proving Theorerh.1we start with an easy related lemma.

Lemma 1.0.1f G is a tree, and(0) = (tanh # + tanh?#)/2, then
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Proof. (Lemma 1.0) IfG is a tree therC;; = tanh# for all (ij) € E andC;; < tanh? @ for all
(ij) ¢ E. The probability thafhr(7) fails is

1 — Poyeec = Pn7G,9{67;j < 7 for some(i, j) € E or @j > 7 forsome (i,j) ¢ E}. 2

Let 7 = (tanh @ + tanh?#)/2. Applying Azuma-Hoeffding inequality t@ij followed by union
bound over the edges, we bound this probability by

Payee > 1 _p2 efén(tanh 6—tanh? 9)2 ) (3)

Imposing the right hand side to be larger thigoroves our result. O

Proof. (Theoreml.1) We will prove that, fold < arctanh(1/(2A)), C;; > tanh@forall (i,j) € E
andCj; < 1/(2A) for all (ij) ¢ E. In particularC;; < Cy, for all (4,5) ¢ Eand all(k,l) € E .
The theorem follows from this fact via union bound and Azur@effding inequality as in the proof
of Theorem 1.0.

The boundC;; > tanh 6 for (ij) € E is a direct consequence of Griffiths inequality: compare the
expectation ofz;z; in G with the same expectation in the graph that only includee édg).

The second bound is derived using the techniqua@l; i.e., bound’;; by the generating function
for self-avoiding walks on the graphs froito j. More precisely, assunie= dist(7, j) and denote
by N;;(k) the number of self avoiding walks of lengthbetweeni andj on G. Then[16] proves
that

A!=!(tanh #)! A(tanh 0)?

.. < k . < k—1 k < <

Ci; < kE:l(tanh 0)°N;j;(k) < nE:l A7 (tanh 0)" < T~ Atenhd = 1—Atanhd (4)
If & < arctanh(1/(2A)) the above implie€’;; < 1/(2A) which is our claim. O



Proof. (Theorem1.2) The theorem is proved by constructiigas follows: sample a uniformly
random regular graph of degréeover thep — 2 vertices{1,2,...,p — 2} = [p — 2]. Add an extra
edge between nodes— 1 andp. The resulting graph is not connected. We claim thatfor K/A
and with probability converging tb asp — oo, there exist, j € [p — 2] such that(i, j) ¢ F and
C;; > Cp_1 . As a consequence, thresholding fails.

ObviouslyC,,—1 , = tanh#. Choosei € [p — 2] uniformly at random, ang a node at a fixed
distancet from i. We can comput€’;; asp — oo using the same local weak convergence result
as in the proof of Lemma.3. Namely,C;; converges to the correlation between the root and a leaf
node in the tree Ising modéL6). In particular one can show that

p—00

wherem(0) = tanh(Ah*/(A — 1)) and h* is the unique positive solution of = (A —
1) atanh {tanh @ tanh h}.

The proof is completed by showing thatnh 0 < m(0)? for all > K/A. O

2 Regqularized logistic regression

Proof. (Lemma3.1) We outline here the upper bound on the teifh

Sincef4c = 0 an application of the mean value theorem yidld®*];| < 2A||0s — 0%]|2. Now
omin(@*) < 1 so the event guarantees that,,;, (Q"*) < 2. Using Lemma 3 fron{7] we can

write
N N 1 8A2 wo
65— 65112 < <37 (1 - \/1 g (IS ||oo>) . (6)

If £ holds we can assume without loss of gener<aui¥§£|\OO < landsincel — 1 —z < z,x €

[0, 1] the theorem’s assumption dnmakes both(ﬁ RTgHOO and| RAI} | smaller thare/8. O

Proof. (Lemma3.3) We outline here some of the calculations with respect tortfeemode(16). An
important property that follows from the fixed point equatio= (A — 1) atanh {tanh # tanh h}
is that, if (2 (,)) is a function of the variables ifi(¢) then

Etrt).04:19(X11)} = Err),0{9(X10)} 55 (1)
with the obvious identification of (¢) as a subtree of (¢ + 1).

Let r be a uniformly random vertex itr andi # j two neighbors ofr. Using the local weak
convergence proper{il 7) with ¢t = 1 we get
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whereM = 3”57, Xi is the sum of the variables on the leaves of a deptke, and, j € 0T(1).
Let ¢ andd be defined by

Jim (Q5s ™ = e (10)
Jim (Qss iy = d (11)

Finally, forr’ at distance from r, consider theA-dimensional vector in

lim (Qes) = Fs(t). (12)
It can be shown that
X.
Fs(t) = Erqy,0,4+(Xe ) Ere1y,0,4 (7cosh;9M) +oi(1) = f+o0:(1), (13)
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wherer’ is the root of a first tree, ande 9T (1) is a leaf of the second tree. In particuls(¢) has,
for larget, asymptotically equal entries.

The final result is obtained by computing the quantitiek ¢, d, f. O



