Optimal Response Initiation: Why Recent Experience Matters

Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)

Bibtex Metadata Paper Supplemental

Authors

Matt Jones, Sachiko Kinoshita, Michael C. Mozer

Abstract

In most cognitive and motor tasks, speed-accuracy tradeoffs are observed: Individuals can respond slowly and accurately, or quickly yet be prone to errors. Control mechanisms governing the initiation of behavioral responses are sensitive not only to task instructions and the stimulus being processed, but also to the recent stimulus history. When stimuli can be characterized on an easy-hard dimension (e.g., word frequency in a naming task), items preceded by easy trials are responded to more quickly, and with more errors, than items preceded by hard trials. We propose a rationally motivated mathematical model of this sequential adaptation of control, based on a diffusion model of the decision process in which difficulty corresponds to the drift rate for the correct response. The model assumes that responding is based on the posterior distribution over which response is correct, conditioned on the accumulated evidence. We derive this posterior as a function of the drift rate, and show that higher estimates of the drift rate lead to (normatively) faster responding. Trial-by-trial tracking of difficulty thus leads to sequential effects in speed and accuracy. Simulations show the model explains a variety of phenomena in human speeded decision making. We argue this passive statistical mechanism provides a more elegant and parsimonious account than extant theories based on elaborate control structures.