
Supplementary material for

“Temporal Difference Based Actor Critic Algorithms -

Convergence and Neural Implementation”

A Proof of Theorem 2.4

The following theorem was proved in [3, 4, 6]. It relates the gradient of the average reward per stage
to the differential value function. We present the proof here, which will be used in the sequel.

Theorem A.1. The gradient of the average reward per stage can be expressed by

∇η(θ) =
∑

x,y∈X ,u∈U

P (x, u, y)ψ(x, u|θ)h(y|θ). (A.1)

Proof. We begin with Poisson’s equation (2) in vector form

h(θ) = r − eη(θ) + P (θ)h(θ),

where h(θ) = [h(x|θ]x∈X and e is a column vector of 1’s. Taking the derivative with respect to θ and
rearranging yields

e∇η(θ) = −∇h(θ) + ∇P (θ)h(θ) + P (θ)∇h(θ).

Multiplying the left hand side of the last equation by the stationary distribution π(θ)′ yields

∇η(θ) = −π(θ)′∇h(θ) + π(θ)′∇P (θ)h(θ) + π(θ)′P (θ)∇h(θ)

= −π(θ)′∇h(θ) + π(θ)′∇P (θ)h(θ) + π(θ)′∇h(θ)

= π(θ)′∇P (θ)h(θ).

Expressing the result explicitly we obtain

∇η(θ) =
∑

x,y∈X

P (x)∇P (y|x, θ)h(y|θ)

=
∑

x,y∈X

P (x)∇

{
∑

u

(P (y|x, u)µ(u|x, θ))

}

h(y|θ)

=
∑

x,y∈X

P (x)
∑

u

(P (y|x, u)∇µ(u|x, θ)) h(y|θ)

=
∑

x,y∈X ,u∈U

P (y|x, u)P (x)∇µ(u|x, θ)h(y|θ)

=
∑

x,y∈X ,u∈U

P (y|x, u)µ(u|x, θ)P (x)
∇µ(u|x, θ)

µ(u|x, θ)
h(y|θ)

=
∑

x,y∈X ,u∈U

P (x, u, y)ψ(x, u|θ)h(y|θ).

(A.2)
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Now we can prove Theorem 2.4. We start with the first line in (A.2).

∇η(θ) =
∑

x,y∈X

P (x)∇P (y|x, θ)h(y|θ)

=
∑

x,y∈X

P (x)∇P (y|x, θ) (h(y|θ) − h(x|θ) + r(x) − η(θ) + f(x))

−
∑

x,y∈X

P (x)∇P (y|x, θ) (−h(x|θ) + r(x) − η(θ) + f(x))

=
∑

x,y∈X

P (x)∇P (y|x, θ) (d(x, y) + f(x))

−
∑

x,y∈X

P (x)∇P (y|x, θ) (−h(x|θ) + r(x) − η(θ) + f(x)) .

Next, we show that the second term equals 0. We define F (x, θ) , −h(x|θ) + r(x) − η(θ) + f(x) and
obtain

∑

x,y∈X

P (x)∇P (y|x, θ)F (x, θ) =
∑

x

P (x)F (x, θ)
∑

y

∇P (y|x, θ)

=
∑

x

P (x)F (x, θ)∇
∑

y

P (y|x, θ)

=
∑

x

P (x)F (x, θ)∇1

= 0.

Following the same steps as in the proof of Theorem A.1 we have

∇η(θ) =
∑

x,y∈X ,u∈U

P (x, u, y)ψ(x, u|θ) (d(x, y) + f(x)) .

B Proof of Theorem 2.5

We introduce the following assumption, which adds constraints to the iterations for θ and h̃, and will be
used in the sequel to prove Theorem 2.5. This assumption may seem restrictive at first but in practice
it is not. The reason is that we usually assume the bounds of the constraints to be large enough so the
iterates practically do not reach those bounds. For example, if θ represents synaptic weights of a neural
network, above a certain value the synapses saturate. Thus we will choose the bound for θ to be above
its saturation value.

Assumption B.1. We denote by {θi}
K
i=1 the components of θ, and choose positive constants Bθ and

Bh̃. We define the set H ⊂ R
K × R

|X | to be

H ,
{
(θi, h̃(x))

∣
∣ − Bθ ≤ θi ≤ Bθ, 1 ≤ i ≤ K, −Bh̃ ≤ h̃(x) ≤ Bh̃, ∀x ∈ X

}
.

Let ΠH be an operator which projects (θ, h̃(x)) onto H.

For future purposes, we express Algorithm 1 in a different way. Define the augmented parameter vector
ym by

ym ,





θm

h̃m

η̃m



 , θm ∈ R
K , h̃m ∈ R

|X |, η̃m ∈ R.

The algorithm ignoring the constraints of Assumption B.1, takes the form

ym+1 = ym + γmVm(ym) (unconstrained iteration), (B.1)
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where the components of Vm(ym) are determined according Algorithm 1. Including the constraints we
can write the iterates of Algorithm 1 as

ym+1 = ΠH [ym + γmVm(ym)] (constrained iteration). (B.2)

We note that we can write the projected equation (B.2) as

ym+1 = ym + γmVm(ym) + γmZm(ym), (B.3)

where Zm(ym) is a projection term. Define Fm to be the σ-algebra generated by xn, 0 ≤ n ≤ tm
namely, Fm = σ{x0, x1, ..., xtm

}, representing the history of the algorithm up to the time tm. Set

v(ym) , E [Vm(ym)|Fm]

to be the average change of the algorithm during the m-th cycle, where the m-th cycle is defined to
consist of the times between tm and tm+1. We can then rewrite (B.2) as

ym+1 = ΠH [ym + γmv(ym) + εm], where εm = γm(Vm(ym) − v(ym)).

We note that the vector v(ym) is the deterministic part of the iterate while the vector εm is the stochastic
part.

In order to prove Theorem 2.5, we use techniques from the theory of constrained stochastic approxima-
tion [5], in particular, Theorem 5.2.1 in [5] adapted to our purposes.

Theorem B.1. Consider an iterate scheme as in (B.3), and assume the following:

1. supm E[|Vm|2] < ∞,

2. There exists a measurable function v(y) such that E[Vm|y0, Vi, i < m] = v(ym),

3. The function v(y) is continuous,

4. The sequence γm satisfies
∑

γm = ∞ and
∑

γ2
m < ∞.

We define {yn(·)} to be a set of continuous time functions, which are shifted functions of the linear
interpolations of the ym

1. Then, there is a set N of probability zero such that for ω /∈ N , the set of
functions {yn(ω, ·)} is equicontinuous. Let y(ω, ·) denote the limit of some convergent sub sequence.
Then this pair satisfies the projected ODE

ẏ = ΠH [v(y)].

Thus, we need to prove that the assumptions of Theorem B.1 are valid. We devote the rest of this
section to this purpose. Sub-vectors of v(ym) will be denoted by v(θm), v(h̃m), and v(η̃m). We examine
the components of v(ym). Define Tm = tm+1 − tm, representing the time between two consecutive

1Define t̂0 = 0 and t̂m =
∑m−1

i=0 γi. Define the continuous time interpolation y0(·) on (−∞,∞) by y0(t) = y0 for

t < 0 and y0(t) = ym for t̂m−1 < t ≤ t̂m. Define the sequence of shifted process by ym(t) , y0(t + t̂m).
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hitting times of the recurrent state x∗. Therefore, we can write the actor iterate θm as

v(θm) = E

[
tm+1−1

∑

n=tm

d̃(xn+1, xn)ψ(xn, un|θm)
∣
∣
∣Fm

]

= E

[
tm+1−1

∑

n=tm

d(xn+1, xn)ψ(xn, un|θm)
∣
∣
∣Fm

]

+ E

[
tm+1−1

∑

n=tm

(d̃(xn+1, xn) − d(xn+1, xn))ψ(xn, un|θm)
∣
∣
∣Fm

]

= Eθm
[Tm]∇η(θm) + (η(θm) − η̃m)E

[
tm+1−1

∑

n=tm

ψ(xn, un|θm)
∣
∣
∣Fm

]

+

A1
︷ ︸︸ ︷

E

[
tm+1−1

∑

n=tm

(

h̃m(xn+1) − h(xn+1|θm)
)

ψ(xn, un|θm)
∣
∣
∣Fm

]

+

A2
︷ ︸︸ ︷

E

[
tm+1−1

∑

n=tm

(

h(xn|θm) − h̃m(xn)
)

ψ(xn, un|θm)
∣
∣
∣Fm

]

,

(B.4)

where for the last equality we used Theorem 2.4 and (3). Next, we express A1 and A2 as functions of
the true differential value, h(x|θ), and the estimated differential value, h̃m(x). For A1 we have

A1 = E

[
∑

x∈X

tm+1−1
∑

n=tm

(1 {xn+1 = x}h(x|θm) − h̃m(x))ψ(xn, un|θm)
∣
∣
∣Fm

]

=
∑

x∈X

(

h(x|θm) − h̃m(x)
)

E

[
tm+1−1

∑

n=tm

(1 {xn+1 = x}ψ(xn, un|θm)
∣
∣
∣Fm

]

,

and for A2 we have

A2 = E

[
∑

x∈X

tm+1−1
∑

n=tm

(1 {xn = x}h(x|θm) − h̃m(x))ψ(xn, un|θm)
∣
∣
∣Fm

]

=
∑

x∈X

(

h(x|θm) − h̃m(x)
)

E

[
tm+1−1

∑

n=tm

(1 {xn = x}ψ(xn, un|θm)
∣
∣
∣Fm

]

.

where 1 {A} is an indicator function which equals 1 if A is true, and 0 otherwise. Thus, we have

A1 + A2 =
∑

x∈X

D(x)(θ)(h(x|θ) − h̃(x)),

where D(x) was defined in Theorem 2.5. Summarizing the above we get

v(θm) = Eθm
[Tm]∇η(θm) + C(θ)(η(θm) − η̃m) +

∑

x∈X

D(x)(θ)(h(x|θ) − h̃(x)).
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For the critic we have for all x ∈ X

v(h̃m(x)) = E



Γh

tm+1−1
∑

n=N(x)

d̃(xn+1, xn)
∣
∣
∣Fm





= E



Γh





tm+1−1
∑

n=N(x)

(r(xn) − η̃m) − h̃m(x)





∣
∣
∣Fm





= E



Γh





tm+1−1
∑

n=N(x)

(r(xn) − η(θm)) − h̃m(x)





∣
∣
∣Fm





+ E



Γh

tm+1−1
∑

n=N(x)

(η(θm) − η̃m)
∣
∣
∣Fm





= Γh

(

h(x|θm) − h̃m(x)
)

+ ΓhEθm
[Tm](η(θm) − η̃m),

(B.5)

and

vm(η̃m) = ΓηE

[
tm+1−1

∑

n=tm

(r(xn) − η̃m)|Fm

]

= ΓηEθm
[Tm](η(θm) − η̃m).

(B.6)

The following lemma will establish the boundedness of the first two moments of Tm.

Lemma B.2. The first two moments of the random times {Tm} are bounded by a constant BT , for all
θ ∈ R

K and for all m, 1 ≤ m < ∞.

Proof. The boundedness from below is trivial since the random times are positive. According to As-
sumption 2.1(i) and Lemma 2.1, each Markov chain in P̄ is a periodic and recurrent. Thus, we can
show that for each θ ∈ R

K there exist a constant BT (θ), 0 < BT (θ) < 1, where 2

P (Tm = k|θm) ≤ Bk
T (θm), 1 ≤ m < ∞, 1 ≤ k < ∞. (B.7)

Therefore,

Eθm
[Tm] =

∞∑

k=1

kP (Tm = k|θm) ≤

∞∑

k=1

kBk
T (θm) ≤ BT1

(θm) < ∞,

and

Eθm
[T 2

m] =

∞∑

k=1

k2P (Tm = k|θm) ≤

∞∑

k=1

k2Bk
T (θm) ≤ BT2

(θm) < ∞.

Moreover, since the set P̄ is closed, and by Assumption 2.1 the above hold for the closure of P̄ as well,
there exists a constant BT satisfying BT = max{supθ BT1

(θ), supθ BT2
(θ)} < ∞.

The following lemma establishes summation and convergence properties of the the random variable
γmTm. These properties will be used later in order to show that the iterate η̃m is bounded.

Lemma B.3. Given the result of Lemma B.2, and that {γm}∞m=1 satisfies the assumptions of Algorithm
1, we have:

2An MC is periodic if the greatest common divisor of the set {nx = min{n|P
(n)
xx > 0}|1 ≤ x ≤ |X |} is larger than 1,

where P
(n)
xx is the probability of starting from state x and returning to it in n steps. According to Assumption 2.1(i) and

Lemma 2.1 the chain is recurrent and aperiodic, thus, Pxy(θ) < 1, for all θ ∈ R
K , x, y ∈ X (otherwise the chain is neither

aperiodic nor recurrent). A discussion of this property is found in [2], Section 2.4.2.
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1. The second moments of the random times Tm satisfies

E

[
∞∑

m=1

γ2
mT 2

m

]

< ∞,

2. limm→∞ γmTm = 0,w.p. 1.

Proof. For the first part of the lemma we have

E

[
∞∑

m=1

γ2
mT 2

m

]

= lim
k→∞

E

[
k∑

m=1

γ2
mT 2

m

]

= lim
k→∞

k∑

m=1

γ2
mE

[
T 2

m

]

≤ BT

∞∑

m=1

γ2
m

< ∞,

where in the first equality we used the Monotone Convergence Theorem. Thus, the first part of the
lemma is established. We prove the second part by contradiction. Let us assume that limsupm→∞ γmTm =
ǫ+, and liminfm→∞ γmTm = ǫ−. Choose ǫ2 = 1/2 · max{|ǫ+|2, |ǫ−|2}. Thus, γ2

mT 2
m is greater than ǫ2

infinitely often, which yields

∞∑

m=1

γ2
mT 2

m ≥

∞∑

m=1

γ2
mT 2

m1
{
γ2

mT 2
m > ǫ2/2

}

≥ ǫ2
∞∑

m=1

1
{
γ2

mT 2
m > ǫ2/2

}

= ∞,

yielding a contradiction.

The next lemma shows that the iterates of η̃m are bounded.

Lemma B.4. The sequence η̃m is bounded w.p. 1.

Proof. Using lemma B.3 we can choose M such that γmTm < ǫ < 1 for all m > M . Using Assumption
2.1(ii) for the boundedness of the rewards, we have

η̃m+1 = (1 − γmTm)η̃m + Γηγm

tm+1−1
∑

n=tm

r(xn)

≤ (1 − γmTm)η̃m + ΓηγmTmBr

≤

{
η̃m if η̃m > BrΓη,
BrΓη if η̃m ≤ BrΓη,

= max{η̃m, BrΓη},

(B.8)

which means that each iterate is bounded above by the previous iterate or by a constant. Using similar
arguments we can prove that η̃m is bounded below.

Next, we prove the first assumption of Theorem B.1.

Lemma B.5. The vector E [|Vm(ym)|2] is bounded w.p. 1.
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Proof. We prove the boundedness of the three parts of the vector Vm(ym). The mean E [|η̃|2] < ∞ since
by Lemma B.4 the iterate η̃m is bounded. Next, we look at the mean of the squared iterate h̃m(x). For
all x ∈ X ,

E
[

|h̃m+1(x)|2
]

= E








h̃m + γmΓh





tm+1−1
∑

n=Nm(x)

d̃(xn, xn+1









2





(i)
=E








(1 − γm)h̃m(x) + γmΓh





tm+1−1
∑

n=Nm(x)

(r(xn) − η̃m)









2





≤ (1 − γm)2E
[

h̃2
m(x)

]

+ γ2
mΓ2

hE










tm+1−1
∑

n=Nm(x)

(r(xn) − η̃m)





2





+ 2(1 − γm)γmE





∣
∣
∣h̃m(x)

∣
∣
∣

∣
∣
∣
∣
∣
∣

Γh

tm+1−1
∑

n=N(x)

(r(xn) − η̃m)

∣
∣
∣
∣
∣
∣





(ii)

≤ (1 − γm)2E
[

h̃2
m(x)

]

+ γ2
mΓ2

hE










tm+1−1
∑

n=Nm(x)

(r(xn) − η̃m)





2





+ 2(1 − γm)γm

√
√
√
√
√
√E

[

h̃2
m(x)

]

E








Γh

tm+1−1
∑

n=N(x)

(r(xn) − η̃m)





2





≤

(

(1 − γm)

√

E
[

h̃2
m(x)

]

+ γm

√

Γ2
hBT (Br + Bη̃)2

)2

≤

(

max

{

1,

√

E
[

h̃2
m(x)

]

,
√

Γ2
hBT (Br + Bη̃)2

})2

≤ max
{

1,E
[

h̃2
m(x)

]

,Γ2
hBT (Br + Bη̃)2

}

where in (i) we used (3), and in (ii) we used the Cauchy Schwarz inequality. We see that the iterate

E
[

|h̃m+1(x)|2
]

is bounded by the previous iterate E
[

|h̃m(x)|2
]

or by a constant, thus, E
[

|h̃m(x)|2
]

is

bounded. We denote this bound by Bh̃. Therefore, we can conclude easily that E
[
V 2

m(θm)
]

is bounded

since E[h̃2
m(x)] is bounded for all x ∈ X . Formally,

E
[
V 2

m(θm)
]

= E





(
tm+1−1

∑

n=tm

d̃(xn, xn+1)ψ(xn, un|θm)

)2


 .

≤ BT B2
ψ(2Bh̃ + Bη̃ + Br)

2,

which concludes the proof.

The following lemma proves the continuity of several functions and an operator which will be used in
proving the continuity of v(y).

Lemma B.6. Under Assumptions 2.1(ii) and 2.2 we have

1. ψ(x, u|θ) is continuous with respect to θ.

2. P (y|x, θ) is continuous with respect to θ.
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3. π(x|θ) is continuous with respect to θ.

4. η(θ) is continuous with respect to θ.

5. For a stopping time T (x) = min{k > 0|xk = x}, and for a function g(x, u, θ) continuous for all
x ∈ X , u ∈ U , and θ ∈ R

K , and absolutely bounded with a constant Bg, we have

Eθ





T (x)
∑

k=0

g(xk, uk, θ)
∣
∣
∣x0



 (B.9)

is continuous with respect to θ.

6. h(x|θ), T (θ), C(θ), and D(x)(θ) are continuous with respect to θ.

Proof. For brevity, all continuities in this proof are with respect to θ.

1. According to Assumption 2.1(ii) for all x ∈ X and u ∈ U , µ(u|x, θ) is twice differentiable, thus
∇µ(u|x, θ) is continuous and so is ψ(u|x, θ).

2. P (y|x, θ) is a compound function of an integral and continuous function, thus it is continuous.

3. According to Lemma 2.1, for each θ ∈ R
K we have a unique solution for the following non-

homogenous linear equation system in {π(i|θ)}
|X |
i=1







|X |
∑

i=1

π(i|θ)Pij(θ) = π(j|θ), j = 1, . . . , |X | − 1,

|X |
∑

i=1

π(i|θ) = 1,

or in matrix form M(θ)π(θ) = b. Thus, using Cramer’s rule we have π(i|θ) = Q(i, θ)/det[M(θ)],
where Q(i, θ) and det[M(θ)] are polynomials function of entries in M(θ), thus π(θ) is continuous.
We note that det[M(θ)] is not zero since by Assumption 2.1(i) the system has a unique solution
for all θ ∈ R

K .

4. The variable η(θ) is a linear combination of continuous functions, thus continuous.

5. For a fixed N = 0, 1, . . . we have

Eθ

[
N∑

k=0

g(xk, uk, θ)
∣
∣
∣x0

]

=
∑

ν0∈U,...,ζN∈X ,νN∈U

Pr (u0 = ν0, . . . , xk = ζk, uN = νN |x0, θ)

× (g(x0, νo, θ) + . . . + g(ζN , νN , θ))

(B.10)

Both π(θ) and P (θ) are continuous, therefore Pr (x0 = ζ0, . . . , xk = ζk| θ) is continuous. We have

a finite sum of continuous functions thus Eθ

[
∑N

k=0 g(xk, uk, θ)|x0

]

is continuous. Also, looking

at (B.10) we see that Eθ

[
∑N

k=0 g(xk, uk, θ)|x0

]

is bounded by Bg(N + 1). Define Tk(x) , {x1 6=

y, . . . , xk−1 6= y, xk = y|x0 = x} for a fixed k = 0, 1, . . .. As in Lemma B.2, there exists a constant
bT (θ), 0 < bT (θ) < 1, such that for a fixed k we have Pr(Tk(x)) ≤ bk

T (θ). Since P is a closed set,

we can find a constant b̃T , 0 < b̃T < 1, such that Tk(x) ≤ b̃k
T . Define

GN (θ) ,

N∑

k=0

Pr(Tk(x))Eθ

[
k∑

l=0

g(xl, ul, θ)
∣
∣
∣x0

]

. (B.11)
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We claim that the function series {GN (θ)}∞N=0 convergence uniformly3 using the Cauchy Criterion

for uniform convergence4, for all ǫ > 0 and N satisfying 2Bg b̃
N
T /(1 − b̃T )2 < ǫ. Mathematically,

‖GN+p(θ) − GN (θ)‖ =

∥
∥
∥
∥
∥

N+p
∑

k=N+1

Pr(Tk(x))Eθ

[
k∑

l=0

g(xl, ul, θ)
∣
∣
∣x0

]∥
∥
∥
∥
∥

≤
∞∑

k=N+1

b̃k
T Bg(k + 1)

≤
2Bg b̃

N
T

(1 − b̃T )2

≤ ǫ.

Thus, we can express Eθ

[
∑T (x)

k=0 g(xk, uk, θ)|x0

]

as

Eθ





T (x)
∑

k=0

g(xk, uk, θ)
∣
∣
∣x0



 = Eθ



Eθ





T (x)
∑

k=0

g(xk, uk, θ)
∣
∣
∣x0





∣
∣
∣
∣
∣
T (x)





= lim
n→∞

N∑

k=0

Pr(Tk(x))Eθ

[
k∑

l=0

g(xl, ul, θ)
∣
∣
∣x0

]

,

which is continuous since it is a limit of a continuous function series which converges uniformly5.

6. The continuity of h(x|θ), T (θ), C(θ), and D(x)(θ) follows immediately from 5.

Based on the assumptions of Algorithm 1 and Lemmas B.5, and B.6 we can conclude that the system
converges to the desired system of ODE.

C Proof of Theorem 2.6

In this section we find conditions under which Algorithm 1 converges to a neighborhood of a local
maximum, and more precisely, conditions that lim supt→∞ ‖∇η(θ(t))‖ ≤ ǫ, for arbitrary positive ǫ. We
begin by establishing a bound on a time dependent ODE of the first order. Then, we prove some
properties of the ODE system (5), and conclude by proving the section’s main result.

The following lemma will be used later for the linear equations (5), i.e., on the ODEs for η̃ and h̃(x).

Lemma C.1. Assume the following time dependent ODE







d

dt
x(t) =

1

τ
(f(t) − x(t)) ,

x(0) = x0,
(C.1)

where df(t)/dt ≤ Bf . Then, limt→0 |x(t) − f(t)| ≤ Bfτ2.

3We say that a function series {GN (θ)} converges uniformly to G(θ) on a set E if ∀ǫ > 0, ∃M(ǫ) such that ∀N > M(ǫ)
and ∀θ ∈ E we have ‖GN (θ) − G(θ)‖ < ǫ.

4Cauchy Criteria: A function series {GN (θ)} converges uniformly in a set E if and only if ∀ǫ > 0, ∃M(ǫ) such that
∀N > M(ǫ), ∀p ≥ 1, and ∀θ ∈ E we have ‖GN+p − GN‖ < ǫ.

5If a continuous function series {GN (θ)} converges uniformly to G(θ) on a set E then G(θ) is continuous on E.
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Proof. We write (C.1) in the following way

τ
d

dt
(x(t) − f(t)) = −(x(t) − f(t)) − τ

df(t)

dt
.

We define z(t) , x(t) − f(t) and g(t) , −τdf(t)/dt, where |g(t)| ≤ τBf and z(0) = z0 , x0 − f(0).
Thus, we have 





τ
d

dt
z(t) = −z(t) + g(t),

z(0) = z0.

The solution of this ODE is

z(t) = z0e
−t/τ + e−t/τ

∫ t

0

g(s)es/τds.

Thus,

|z(t)| ≤ |z0| e
−t/τ + e−t/τ

∫ t

0

|g(s)| es/τds

≤ |z0| e
−t/τ + Bfτ2

(

1 − e−t/τ
)

,

and taking the limit t → ∞ completes the proof.

In the following lemma, we prove several properties of the algorithm, which will be used later.

Lemma C.2.

1. ∇π(θ) is uniformly bounded.

2. ∇η(θ) is uniformly bounded.

3. ∇h(x|θ) is uniformly bounded.

4. θ̇ is uniformly bounded.

5. η̇(θ) is uniformly bounded.

6. ḣ(x|θ) is uniformly bounded, for all x ∈ X .

7. ‖C(θ)‖ is uniformly bounded.

8.
∥
∥D(x)(θ)

∥
∥ is uniformly bounded, for all x ∈ X .

Proof. 1. From the proof of Lemma B.6, we can write

π(i|θ) = Q(i, θ)/det[M(θ)].

We note that det[M(θ)] 6= 0 for all P (θ) ∈ P̄, thus there exists a constant, m0, which satisfies
|M(θ)| ≥ m0 > 0, for all θ ∈ R

K . In addition, Q(i, θ) and det[M(θ)] are differentiable functions
with respect to θ, ∀x, y ∈ X , and P (y|x, θ) is a differentiable function with respect to θ with
bounded derivative. Therefore, ‖∇Q(i, θ)‖ and ‖∇det[M(θ)]‖ are bounded functions. Thus, we
can conclude that

∇π(i|θ) =
Q(i, θ)∇det[M(θ)] −∇Q(i, θ) det[M(θ)]

det[M(θ)]2
, i ∈ X ,

is bounded. We denote this bound by B∇π.

2. We have ∇η(θ) =
∑

x∈X r(x)∇π(x|θ) ≤ |X |BrB∇π.
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3. We recall the Poisson equation (2). We can write the following system of linear equations in
{h(x|θ)}x∈X , namely,







h(x|θ) = r(x) − η(θ) +
∑

y∈X

P (y|x, θ)h(y|θ), ∀x ∈ X , x 6= x∗,

h(x∗|θ) = 0.

(C.2)

or in matrix form N(θ)h(θ) = c. Adding the equation h(x∗|θ) = 0 yields a unique solution for
the system (see, for example, Prop. 7.4.1 in [1], Vol. 1). Thus, using Cramer’s rule we have
h(x|θ) = R(x, θ)/det[N(θ)], where R(x, θ) and det[N(θ)] are polynomial functions of entries in
N(θ), which are uniformly bounded, and have uniformly bounded derivatives. Continuing in the
same steps of the proof of the previous items, we conclude that ∇h(x|θ) is uniformly bounded for
all x ∈ X .

4. Looking at the equation for θ̇ in (5), we see that the r.h.s of the equation is composed of bounded
terms. We denote this bound by Bθ̇.

5. It immediately follows that

|η̇(θ)| = |∇η(θ) · θ̇| ≤ B∇ηBθ̇, ∀θ ∈ R
K . (C.3)

We denote this bound by Bη̇.

6. It immediately follows that

|ḣ(x|θ)| = |∇h(x|θ) · θ̇| ≤ B∇hBθ̇, ∀x ∈ X , θ ∈ R
K . (C.4)

We denote this bound by Bḣ.

7. It immediately follows that

‖C(θ)‖ =

∥
∥
∥
∥
∥
Eθ

[
T−1∑

n=0

ψ(xn, un|θ)

]∥
∥
∥
∥
∥
≤ BT Bψ.

We denote this bound by BC .

8. It immediately follows that

∥
∥
∥D(x)(θ)

∥
∥
∥ =

∥
∥
∥
∥
∥
Eθ

[
T−1∑

n=0

1 {xn+1 = x}ψ(xn, un|θ)

]∥
∥
∥
∥
∥
≤ BT Bψ, x ∈ X .

We denote this bound by BD.

The following lemma establishes the main result of this section. It states the conditions under which
the ODE system (5) converges to some neighborhood of a stationary point.

Lemma C.3. If we choose Γη ≥ B2
η̇/ǫη and Γh ≥ B2

ḣ
/ǫh, for some positive ǫh and ǫη, then

lim sup
t→∞

‖∇η(θ(t))‖ ≤ ǫ, (C.5)

where ǫ , BCǫη + |X |BDǫh.

Proof. Using the boundedness of η̇(θ) and ḣ(xθ) from Lemma C.2, and the assumed lower bounds on
Γh and Γη, we apply Lemma C.1 to the variables η̃ and h̃. We conclude that there exists a time t0
such that for all t ≥ t0, |η(θ(t)) − η̃(t)| ≤ ǫη and |h(x|θ(t)) − h̃(x, t)| ≤ ǫh, for all x ∈ X . Define the
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ball Bǫ , {θ : ‖∇η(θ)‖ ≤ ǫ}, and consider a trajectory starting inside the ball Bǫ at time t0. We
claim that the trajectory must remain in the ball for all t ≥ t0. Assume the trajectory enters the set
Sǫ,ǫ2 , {θ : ǫ < ‖∇η(θ)‖ ≤ ǫ + ǫ2} at t1 > t0. Thus, at t = t1 we have

η̇(θ) = ∇η(θ) · θ̇

= ∇η(θ) ·

(

T (θ)∇η(θ) + C(θ) (η(θ) − η̃) +
∑

x∈X

D(x)(θ)
(

h(x|θ) − h̃(x)
)
)

≥ ‖∇η(θ)‖ (‖∇η(θ)‖ − GCǫη − |X |GDǫh)

= ‖∇η(θ)‖ (‖∇η(θ)‖ − ǫ)

> 0,

(C.6)

This implies that for t ≥ t0 the trajectory does not leave the set Sǫ,ǫ2 . Since this holds for any ǫ2 > 0,
the trajectory never leaves Bǫ.

Using similar arguments, if at t = t0 we have ‖∇η(θ(t))‖ > ǫ, there exists a time t1 which ‖∇η(θ(t))‖ = ǫ.
Using the claim starting from time t = t1 completes the proof.
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