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Abstract

We consider the problem of obtaining the approximate maximum a posteriories-
timate of a discrete random field characterized by pairwise potentials that form a
truncated convex model. For this problem, we propose an improved st-MINCUT
basedmove makingalgorithm. Unlike previous move making approaches, which
either provide a loose bound or no bound on the quality of the solution (in terms
of the corresponding Gibbs energy), our algorithm achievesthe same guarantees
as the standard linear programming (LP) relaxation. In other words, for the case of
truncated linear metric we obtain a multiplicative bound of2+

√
2, while for trun-

cated quadratic semi-metric we obtain a multiplicative bound of O(
√

M) (where
M is the truncation factor). Compared to previous approachesbased on theLP re-
laxation, e.g. interior-point algorithms or tree-reweighted message passing (TRW),
our method is faster as it uses only the efficient st-MINCUT algorithm in its design.
Furthermore, it directly provides us with a primal solution(unlike TRW and other
related methods which solve the dual of theLP). We demonstrate the effectiveness
of the proposed approach on both synthetic and standard realdata problems.
Our analysis also opens up an interesting question regarding the relationship be-
tween move making algorithms (such asα-expansion and the algorithms pre-
sented in this paper) and the randomized rounding schemes used with convex re-
laxations. We believe that further explorations in this direction would help design
efficient algorithms for more complex relaxations.

1 Introduction

Discrete random fields are a powerful tool for formulating several problems in Computer Vision
such as stereo reconstruction, segmentation, image stitching and image denoising [28]. Given data
D (e.g. an image or a video), random fields model the probability of a set of random variablesv,
i.e. either the joint distribution ofv andD as in the case of Markov random fields (MRF) [2] or the
conditional distribution ofv given D as in the case of conditional random fields (CRF) [21]. The
word ‘discrete’ refers to the fact that each of the random variablesva ∈ v = {v0, · · · , vn−1} can
take one label from a discrete setl = {l0, · · · , lh−1}. Throughout this paper, we will assume aMRF
framework while noting that our results are equally applicable for anCRF.

An MRF defines a neighbourhood relationship (denoted byE) over the random variables such that
(a, b) ∈ E if, and only if, va andvb are neighbouring random variables. Given anMRF, a labelling
refers to a functionf such that

f : {0, · · · , n − 1} −→ {0, · · · , h − 1}. (1)

In other words, the functionf assigns to each random variableva ∈ v, a labellf(a) ∈ l. The
probability of the labelling is given by the following Gibbsdistribution:

Pr(f,D|θ) =
1

Z(θ)
exp(−Q(f,D; θ)), (2)

1



whereθ is the parameter of theMRF andZ(θ) is the normalization constant (i.e. the partition func-
tion). Assuming a pairwiseMRF, the Gibbs energy is given by:

Q(f,D; θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E

θ2
ab;f(a)f(b), (3)

whereθ1
a;f(a) andθ2

ab;f(a)f(b) are the unary and pairwise potentials respectively. The superscripts
‘1’ and ‘2’ indicate that the unary potential depends on the labelling of one random variable at a
time, while the pairwise potential depends on the labellingof two neighbouring random variables.

Using equation (2) it follows that the labellingf which maximizes the posteriorPr(f,D|θ) can be
obtained by minimizing the Gibbs energy. The problem of obtaining such a labellingf is known as
maximuma posteriori(MAP) estimation. In this paper, we consider the problem ofMAP estimation
of random fields where the pairwise potentials are defined bytruncated convex models[5]. Formally
speaking, the pairwise potentials are of the form

θ2
ab;f(a)f(b) = wab min{d(f(a) − f(b)), M} (4)

wherewab ≥ 0 for all (a, b) ∈ E , d(·) is a convex function andM > 0 is the truncation factor.
Recall that, by the definition of Ishikawa [10], a functiond(·) defined at discrete points (specifically
over integers) is convex if, and only if,

d(x + 1) − 2d(x) + d(x − 1) ≥ 0, ∀x ∈ Z. (5)

It is assumed thatd(x) = d(−x). Otherwise, it can be replaced by(d(x) + d(−x))/2 without
changing the energy of any of the possible labellings of the random field [29]. Examples of pairwise
potentials of this form include the truncated linear metricand the truncated quadratic semi-metric,
i.e.

θ2
ab;f(a)f(b) = wab min{|f(a) − f(b)|, M},

θ2
ab;f(a)f(b) = wab min{(f(a) − f(b))2, M}. (6)

Before proceeding further, we would like to note here that the method presented in this paper can be
trivially extended totruncated submodular models(a generalization of truncated convex models).
However, we will restrict our discussion to truncated convex models for two reasons: (i) it makes
the analysis of our approach easier; and (ii) truncated convex pairwise potentials are commonly used
in several problems such as stereo reconstruction, image denoising and inpainting [28]. Note that
in the absence of a truncation factor (i.e. when we only have convex pairwise potentials) the exact
MAP estimation can be obtained efficiently using the methods of Ishikawa [10] or Veksler [29].
However, minimizing the Gibbs energy in the presence of a truncation factor is well-known to be
NP-hard. Given their widespread use, it is not surprising thatseveral approximateMAP estimation
algorithms have been proposed in the literature for the truncated convex model. Below, we review
such algorithms.

1.1 Related Work

Given a random field with truncated convex pairwise potentials, Felzenszwalb and Huttenlocher [7]
improved the efficiency of the popular max-product belief propagation (BP) algorithm [22] to obtain
the MAP estimate.BP provides the exactMAP estimate when the neighbourhood structureE of the
MRF defines a tree (i.e. it contains no loops). However, for a general MRF, BP provides no bounds on
the quality of the approximateMAP labelling obtained. In fact, it is not even guaranteed to converge.

The results of [7] can be used directly to speed-up the tree-reweighted message passing algorithm
(TRW) [30] and its sequential variantTRW-S [13]. Both TRW and TRW-S attempt to optimize the
Lagrangian dual of the standard linear programming (LP) relaxation of theMAP estimation prob-
lem [6, 19, 25, 30]. UnlikeBP andTRW, TRW-S is guaranteed to converge. However, it is well-known
that TRW-S and other related algorithms [8, 17, 26, 27, 31] suffer from the following problems: (i)
they are slower than algorithms based on efficient graph-cuts [28]; and (ii) they only provide a dual
solution [13]. The primal solution (i.e. the labellingf ) is often obtained from the dual solution in an
unprincipled manner1. Furthermore, it was also observed that, unlike graph-cutsbased approaches,

1We note here that the recently proposed algorithm in [23] directly provides the primal solution. However,
it is much slower than the methods which solve the dual.
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TRW-S does not work well when the random field models long range interactions (i.e. when the
neighbourhood relationshipE is highly connected) [15]. However, due to the lack of experimental
results, it is not clear whether this observation applies tothe methods described in [8, 17, 26, 27, 31].

Another way of solving theLP relaxation is to resort to interior point algorithms [4]. Although inte-
rior point algorithms are much slower in practice thanTRW-S, they have the advantage of providing
the primal (possibly fractional) solution of theLP relaxation. Chekuriet al. [6] showed that when
using certain randomized rounding schemes on the primal solution (to get the final labellingf ), the
following guarantees hold true: (i) for Potts model (i.e.d(f(a)−f(b)) = |f(a)−f(b)| andM = 1),
we obtain a multiplicative bound2 of 2 by using the rounding scheme of [12]; (ii) for the truncated
linear metric (i.e.d(f(a)− f(b)) = |f(a)− f(b)| and a generalM > 0), we obtain a multiplicative
bound of2 +

√
2 using the rounding scheme of [6]; and (iii) for the truncatedquadratic semi-metric

(i.e. d(f(a) − f(b)) = (f(a) − f(b))2 and a generalM > 0), we obtain a multiplicative bound of
O(

√
M) using the rounding scheme of [6].

The algorithms most related to our approach are the so-called move making methods which rely on
solving a series of graph-cut (specifically st-MINCUT) problems. Move making algorithms start with
an initial labellingf0 and iteratively minimize the Gibbs energy by moving to a better labelling. At
each iteration, (a subset of) random variables have the option of either retaining their old label or
taking a new label from a subset of the labelsl. For example, in theαβ-swap algorithm [5] the
variables currently labelledlα or lβ can either retain their labels or swap them (i.e. some variables
labelledlα can be relabelled aslβ and vice versa). The recently proposed range move algorithm[29]
modifies this approach such that any variable currently labelled li wherei ∈ [α, β] can be assigned
any labellj wherej ∈ [α, β]. Note that the new labellj can be different from the old labelli, i.e.
i 6= j. Both these algorithms (i.e.αβ-swap and range move) do not provide any guarantees on the
quality of the solution.

In contrast, theα-expansion algorithm [5] (where each variable can either retain its label or get as-
signed the labellα at an iteration) provides a multiplicative bound of2 for the Potts model and2M
for the truncated linear metric3. Gupta and Tardos [9] generalized theα-expansion algorithm for
the truncated linear metric and obtained a multiplicative bound of4. Both α-expansion [5] and its
generalization [9] do not provide any bounds for the truncated quadratic semi-metric. Komodakis
and Tziritas [18] designed a primal-dual algorithm which provides a bound of2M for the truncated
quadratic semi-metric. Note that these bounds are inferiorto the bounds obtained by theLP relax-
ation. However, all the above move making algorithms use only a single st-MINCUT at each iteration
and are hence, much faster than interior point algorithms,TRW, TRW-S andBP.

1.2 Our Results

We further extend the approach of Gupta and Tardos [9] in two ways (section 2). The first extension
allows us to handle any truncated convex model (and not just truncated linear). The second extension
allows us to consider a potentially larger subset of labels at each iteration compared to [9]. As will
be seen in the subsequent analysis (section 3), these two extensions allow us to solve theMAP
estimation problem efficiently using st-MINCUT whilst obtaining the same guarantees as theLP
relaxation [6]. Furthermore, similar to other move making algorithms, our approach does not suffer
from the problems ofTRW-S mentioned above. In order to demonstrate its practical use,we provide

2Let f be the labelling obtained by an algorithmA (e.g. in this case theLP relaxation followed by the
rounding scheme) for a class ofMAP estimation problems (e.g. in this case when the pairwise potentials form a
Potts model). Letf∗ be the optimal labelling. The algorithmA is said to achieve a multiplicative bound ofσ,
if for every instance in the class ofMAP estimation problems the following holds true:

E

„

Q(f,D; θ)

Q(f∗,D; θ)

«

≤ σ,

whereE(·) denotes the expectation of its argument under the rounding scheme.
3Note that sinceα-expansion does not involve any randomized rounding, it is said to provide a multiplicative

bound ofσ for a class ofMAP estimation problems if, and only if, the following holds true for all instances of
that class:

Q(f,D; θ)

Q(f∗,D; θ)
≤ σ.
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Initialization
- Initialize the labelling to some functionf1. For example,f1(a) = 0 for all va ∈ v.
Iteration
- Choose an intervalIm = [im + 1, jm] where(jm − im) = L such thatd(L) ≥ M .
- Move from current labellingfm to a new labellingfm+1 such that

fm+1(a) = fm(a) or fm+1(a) ∈ Im, ∀va ∈ v.
The new labelling is obtained by solving the st-MINCUT problem on a graph described in§ 2.1.

Termination
- Stop when there is no further decrease in the Gibbs energy for any intervalIm.

Table 1: Our Algorithm. As is typical with move making methods, our approach iteratively goes
from one labelling to the next by solving an st-MINCUT problem. It converges when there remain no
moves which reduce the Gibbs energy further.

a favourable comparison of our method with several state of the art MAP estimation algorithms
(section 4).

2 Description of the Algorithm

Table 1 describes the main steps of our approach which relieson solving an st-MINCUT problem
at each iteration. Recall that, given a directed, non-negatively weighted graph with two terminal
verticess (the source) andt (the sink), an st-cut is defined as a partitioning of the vertices of the graph
into two disjoint sets such that the first partition containss while the second partition containst. The
st-MINCUT problem is to find the minimum cost st-cut, where the cost of a cut is measured as the sum
of the weights of the edges whose starting point belongs to the first partition and ending point belongs
to the second partition. The st-MINCUT problem has several efficient, provably polynomial-time
solvers [14] and is used as a building block for several approximateMAP estimation techniques [5,
9, 18, 29].

Unlike the methods described in [5, 29] we will not be able to obtain the optimal move at each
iteration. In other words, if in themth iteration we move from labelfm to fm+1 then it is possible
that there exists another labellingf ′

m+1 such that

f ′
m+1(a) = fm(a) or f ′

m+1(a) ∈ Im, ∀va ∈ v

Q(f ′
m+1,D; θ) < Q(fm+1,D; θ). (7)

However, our analysis in the next section shows that we will still be able to reduce the Gibbs energy
sufficiently at each iteration so as to obtain the guaranteesof theLP relaxation.

We now turn our attention to designing a method of moving fromlabellingfm to fm+1. Our ap-
proach relies on constructing a graph such that every st-cuton the graph corresponds to a labelling
f ′ of the random variables which satisfies:

f ′(a) = fm(a) or f ′(a) ∈ Im, ∀va ∈ v. (8)

The new labellingfm+1 is obtained in two steps: (i) we obtain a labellingf ′ which corresponds to
the st-MINCUT on our graph; and (ii) we choose the new labellingfm+1 as

fm+1 =

{

f ′ if Q(f ′,D; θ) ≤ Q(fm,D; θ),
fm otherwise. (9)

Below, we provide the details of the graph construction.

2.1 Graph Construction

At each iteration of our algorithm, we are given an intervalIm = [im +1, jm] of L labels (i.e.(jm−
im) = L) whered(L) ≥ M . We also have the current labellingfm for all the random variables.
We construct a directed weighted graph (with non-negative weights)Gm = {Vm, Em, cm(·, ·)} such
that for eachva ∈ v, we define vertices{aim+1, aim+2, · · · , ajm

} ∈ Vm. In addition, as is the case
with every st-MINCUT problem, there are two additional vertices called terminals which we denote
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by s (the source) andt (the sink). The edgese ∈ Em with capacity (i.e. weight)cm(e) are of two
types: (i) those that represent the unary potentials of a labelling corresponding to an st-cut in the
graph and; (ii) those that represent the pairwise potentials of the labelling.

Figure 1: Part of the graphGm containing the terminals and the vertices corresponding tothe
variableva. The edges which represent the unary potential of the new labelling are also shown. The
termcm(s, aim+1) is shown in equation (10)
.

Representing Unary Potentials For all random variablesva ∈ v, we define the following edges
which belong to the setEm:

1. For allk ∈ [im + 1, jm), edges(ak, ak+1) have capacitycm(ak, ak+1) = θ1
a;k.

2. For allk ∈ [im + 1, jm), edges(ak+1, ak) have capacitycm(ak+1, ak) = ∞.

3. Edges(ajm
, t) have capacitycm(ajm

, t) = θ1
a;jm

.

4. Edges(t, ajm
) have capacitycm(t, ajm

) = ∞.

5. Edges(s, aim+1) have capacity

cm(s, aim+1) =

{

θ1
a;fm(a) if fm(a) /∈ Im

∞ otherwise.
(10)

6. Edges(aim+1, s) have capacitycm(aim+1, s) = ∞.

Fig. 1 shows the above edges together with their capacities for one random variableva. Note that
there are two types of edges in the above set: (i) with finite capacity; and (ii) with infinite capacity.
Any st-cut with finite cost contains only one of the finite capacity edges for each random variable
va. This is because if an st-cut included more than one finite capacity edge, then by construction it
must include at least one infinite capacity edge thereby making its cost infinite [10, 29]. We interpret
a finite cost st-cut as a relabelling of the random variables as follows:

f ′(a) =

{

k if st-cut includes edge(ak, ak+1) wherek ∈ [im + 1, jm),
jm if st-cut includes edge(ajm

, t),
fm(a) if st-cut includes edge(s, aim+1).

(11)

Note that the sum of the unary potentials for the labellingf ′ is exactly equal to the cost of the st-cut
over the edges defined above. However, the Gibbs energy of thelabelling also includes the sum of
the pairwise potentials (as shown in equation (3)). Unlike the unary potentials we will not be able
to model the sum of pairwise potentials exactly. However, wewill be able to obtain its upper bound
using the cost of the st-cut over the following edges.

Representing Pairwise Potentials For all neighbouring random variablesva andvb, i.e. (a, b) ∈
E , we define edges(ak, bk′) ∈ Em where either one or both ofk andk′ belong to the set(im +1, jm]
(i.e. at least one of them is different fromim + 1). The capacity of these edges is given by

cm(ak, bk′) =
wab

2
(d(k − k′ + 1) − 2d(k − k′) + d(k − k′ − 1)) . (12)

The above capacity is non-negative due to the fact thatwab ≥ 0 andd(·) is convex. Furthermore,
we also add the following edges:

cm(ak, ak+1) = wab

2 (d(L − k + im) + d(k − im)) , ∀(a, b) ∈ E , k ∈ [im + 1, jm)

cm(bk′ , bk′+1) = wab

2 (d(L − k′ + im) + d(k′ − im)) , ∀(a, b) ∈ E , k′ ∈ [im + 1, jm)

cm(ajm
, t) = cm(bjm

, t) = wab

2 d(L), ∀(a, b) ∈ E . (13)
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(a)

(b)

(c)

(d)

Figure 2:(a) Edges that are used to represent the pairwise potentials of two neighbouring random
variablesva and vb are shown. Undirected edges indicate that there are opposing edges in both
directions with equal capacity (as given by equation 12). Directed dashed edges, with capacities
shown in equation (13), are added to ensure that the graph models the convex pairwise potentials
correctly. (b) An additional edge is added whenfm(a) ∈ Im and fm(b) /∈ Im. Here, κab =
wabd(L). (c) A similar additional edge is added whenfm(a) /∈ Im and fm(b) ∈ Im. (d) Five
edges, with capacities as shown in equation (20), are added whenfm(a) /∈ Im andfm(b) /∈ Im.
Undirected edges indicate the presence of opposing edges with equal capacity.

Fig. 2(a) provides an illustration of the above edges. The following Lemma shows that we are now
able to model convex pairwise potentials exactly (up to an additive constant).

Lemma 1: For the capacities defined in equations (12) and (13), the cost of the st-cut which includes
the edges(ak, ak+1) and(bk′ , bk′+1) (i.e. va andvb take labelslk andlk′ respectively) is given by
wabd(k − k′) + κab, whereκab = wabd(L).

Proof: The following proof is due to [29] and is included here for thesake of completeness only.
We start by observing that due to the presence of the infinite capacity edges representing unary
potentials, the st-cut will consist of only the following edges:

(ak, ak+1) ∪ (bk′ , bk′+1) ∪ {(ai′ , bj′), im + 1 ≤ i′ ≤ k, k′ + 1 ≤ j′ ≤ jm}
∪{(ai′ , bj′), k + 1 ≤ i′ ≤ k, im + 1 ≤ j′ ≤ k′}. (14)

Using equations (12) and (13) to sum the capacities of the above edges, we obtain the following
expression:

wab

2 (d(L − k + im) + d(k − im)) + wab

2 (d(L − k′ + im) + d(k′ − im))

+
∑k

i′=im+1

∑jm

j′=k′+1
wab

2 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1))

+
∑jm

i′=k+1

∑k′

j′=im+1
wab

2 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1)) . (15)
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In order to simplify this expression, consider
∑jm

j′=k′+1 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1))

= d(i′ − k′) − 2d(i′ − k′ − 1) + d(i′ − k′ − 2)

+ d(i′ − k′ − 1) − 2d(i′ − k′ − 2) + d(i′ − k′ − 3)

...

+ d(i′ − jm + 2) − 2d(i′ − jm + 1) + d(i′ − jm)

+ d(i′ − jm + 1) − 2d(i′ − jm) + d(i′ − jm − 1)

= d(i′ − k′) − d(i′ − k′ − 1) − d(i′ − jm) + d(i′ − jm + 1). (16)
Hence, it follows that

∑k
i′=im+1

∑jm

j′=k′+1 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1))

= d(im + 1 − k′) − d(im − k′) − d(im − jm + 1) + d(im − jm)

+ d(im + 2 − k′) − d(im + 1 − k′) − d(im − jm + 2) + d(im − jm + 1)

...

+ d(k − k′ − 1) − d(k − k′ − 2) − d(k − jm − 1) + d(k − jm − 2)

+ d(k − k′) − d(k − k′ − 1) − d(k − jm) + d(k − jm − 1)

= d(k − k′) − d(jm − k) − d(k′ − im) + d(jm − im)

= d(k − k′) − d(L − k + im) − d(im − k′) + d(L), (17)
where the last expression is obtained using the fact thatL = jm − im. Note that we also use
the fact thatd(x) = d(−x). As noted before, if this is not the case thend(x) can be replaced by
(d(x) + d(−x))/2 to obtain an equivalentMAP estimation problem. Similarly, it can be shown that

∑jm

i′=k+1

∑k′

j′=im+1 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1))

= d(k − k′) − d(L − k′ + im) − d(im − k) + d(L), (18)
Substituting equations (17) and (18) into expression (15),we obtain the cost of the st-cut as

wab

2 (d(L − k + im) + d(k − im)) + wab

2 (d(L − k′ + im) + d(k′ − im))

+ wab

2 (d(k − k′) − d(L − k + im) − d(im − k′) + d(L))

+ wab

2 (d(k − k′) − d(L − k′ + im) − d(im − k) + d(L))

= wabd(k − k′) + κab. (19)
This proves that the capacities in equations (12) and (13) model convex pairwise potentials exactly
up to an additive constant.

Since the cost of the st-cut exactly models the convex pairwise potential plus a constant, it follows
that the above graph (together with the edges representing unary potentials) can be used to find the
exactMAP estimate of the random field with convex pairwise potentials. However, we are concerned
with the NP-hard case where the pairwise potentials are truncated. In order to model this case, we
incorporate some additional edges to the above set. These additional edges are best described by
considering the following three cases for all(a, b) ∈ E .

1. If fm(a) ∈ Im andfm(b) ∈ Im then we do not add any more edges in the graph (see
Fig. 2(a)).

2. If fm(a) ∈ Im andfm(b) /∈ Im then we add an edge(aim+1, bim+1) with capacitywabM+
κab/2 (see Fig. 2(b)). Similarly, iffm(a) /∈ Im andfm(b) ∈ Im then we add an edge
(bim+1, aim+1) with capacitywabM + κab/2 (see Fig. 2(c)).

3. If fm(a) /∈ Im andfm(b) /∈ Im, we introduce a new vertexpab
4. Using this vertexpab,

five edges are defined with the following capacities (see Fig.2(d)):
cm(aim+1, pab) = cm(pab, aim+1) = wabM + κab/2,

cm(bim+1, pab) = cm(pab, bim+1) = wabM + κab/2,

cm(s, pab) = θ2
ab;fm(a),fm(b) + κab. (20)

4We note here that an equivalent graph can be constructed without adding the vertexpab using the method
of [24]. However, the vertexpab helps make the analysis easier.
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This completes our graph construction. Given the graphGm we solve the st-MINCUT problem which
provides us with a labellingf ′ as described in equation (11). The new labellingfm+1 is obtained
using equation (9).

2.2 Properties of the Graph

We now describe the properties of the above graph construction, with the aim of facilitating the
analysis of our algorithm for the case of truncated linear and truncated quadratic models.

Property 1 As mentioned above, the cost of the st-cut includes exactly the sum of the unary
potentials associated with the labellingf ′, i.e.

∑

va∈v
θ1

a;f ′(a).

Property 2 For (a, b) ∈ E , if f ′(a) = fm(a) /∈ Im andf ′(b) = fm(b) /∈ Im then the cost of the
st-cut includes exactly the pairwise potentialθ2

ab;f ′(a)f ′(b) plus a constantκab. This is due to the fact

that the st-cut contains the edge(s, pab) whose capacity isθ2
ab;fm(a)fm(b) + κab. Note that in this

casepab belongs to the partition containing the sinkt. This can be easily verified by observing that
the cost of the st-cut would increase ifpab belonged to the partition containing the sources (since
this would include edge(pab, aim+1) and(pab, bim+1) in the st-cut).

Property 3 For (a, b) ∈ E , if f ′(a) ∈ Im andf ′(b) ∈ Im such that

d(f ′(a) − f ′(b)) ≤ M, (21)

then the cost of the st-cut includes exactly the pairwise potentialθ2
ab;f ′(a)f ′(b) plus a constantκab,

i.e
wabd(f ′(a) − f ′(b)) + κab. (22)

This follows from the fact that in this case the pairwise potential lies in the ‘convex’ part of the
truncated convex model. For the convex part, our graph construction is exactly the same as that
of [29] which models the pairwise potentials exactly up to the constantκab (see Lemma 1 in§ 2.1).

Property 4 For (a, b) ∈ E , if f ′(a) ∈ Im andf ′(b) ∈ Im such that

d(f ′(a) − f ′(b)) > M, (23)

then the cost of the st-cut overestimates the pairwise potential θ2
ab;f ′(a)f ′(b) as

wabd(f ′(a) − f ′(b)) + κab. (24)

This again follows from the fact that our graph constructionboils down to that of [29] where the
‘truncation’ part of the truncated convex model has been overestimated by the convex function
wabd(·) (see Lemma 1 in§ 2.1).

Property 5 For (a, b) ∈ E , if f ′(a) ∈ Im andf ′(b) = fm(b) /∈ Im then the cost of the st-cut
overestimates the pairwise potentialθ2

ab;f ′(a)f ′(b) as

wabd(f ′(a) − (im + 1)) + wabd
′(f ′(a) − (im + 1)) + wabM + κab, (25)

whered′(·) denotes the following function:

d′(x) = d(x + 1) − d(x) − d(1) +
d(0)

2
, ∀x ≥ 0. (26)

Note thatd′(·) is only defined for a non-negative argument. Clearly, the argument ofd′(·) in equa-
tion (25) is non-negative sincef ′(a) ∈ [im + 1, jm]. For example,d′(x) = 0 whend(·) is a linear
metric andd′(x) = 2x whend(·) is the quadratic semi-metric. Similarly, iff ′(a) = fm(a) /∈ Im

andf ′(b) ∈ Im then the cost of the st-cut overestimates the pairwise potential θ2
ab;f ′(a)f ′(b) as

wabd(f ′(b) − (im + 1)) + wabd
′(f ′(b) − (im + 1)) + wabM + κab. (27)

The above property can be shown to be true using the followingLemma.

Lemma 2: For the graph described in§ 2.1, property 5 holds true.
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Proof: We will show the proof forf ′(a) ∈ Im andf ′(b) = fm(b) /∈ Im. The proof forf ′(a) =
fm(a) /∈ Im andf ′(b) ∈ Im can be obtained from the following arguments trivially.

There are two possible cases to be considered: (i)fm(a) ∈ Im; and (ii) fm(a) /∈ Im. In the first
case, the edges that specify the st-cut are given by

(af ′(a), af ′(a)+1) ∪ {(ai′ , bj′), im + 2 ≤ i′ ≤ f ′(a), im + 1 ≤ j′ ≤ jm}
∪{(aim+1, bj′), im + 2 ≤ j′ ≤ jm} ∪ (aim+1, bim+1). (28)

In the second case, the st-cut is specified by

(af ′(a), af ′(a)+1) ∪ {(ai′ , bj′), im + 2 ≤ i′ ≤ f ′(a), im + 1 ≤ j′ ≤ jm}
∪{(aim+1, bj′), im + 2 ≤ j′ ≤ jm} ∪ (pab, bim+1). (29)

Note that in this casepab belongs to the same partition as the sources. This can be shown easily
by observing that the cost of the st-cut increases ifpab belongs to the partition containing the sink
t (since this would include edges(aim+1, pab) and(s, pab) in the st-cut). The two cases differ only
in that the first includes the edge(aim+1, bim+1) and the second includes the edge(pab, bim+1).
However, the capacity of both these edges is equal towabM + κab/2. Hence it follows that the cost
of the st-cut in both the cases is the same. Therefore it is sufficient to show that the Lemma holds
true for the first case.

The cost of the st-cut for the edges in equation (28) is given by
wab

2 (d(L − f ′(a) + im) + d(f ′(a) − im))

+
∑f ′(a)

i′=im+2

∑jm

j′=im+1
wab

2 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1))

+
∑jm

j′=im+2
wab

2 (d(im − j′ + 2) − 2d(im − j′ + 1) + d(im − j′))

+ wabM + κab

2 . (30)

In order to simplify the above expression, we begin by observing that
∑jm

j′=im+1 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1))

= d(i′ − im) − d(i′ − im − 1) − d(i′ − jm) + d(i′ − jm − 1). (31)

The above equation is obtained by substitutingk′ = im in equation (16). It follows that
∑f ′(a)

i′=im+2

∑jm

j′=im+1
wab

2 (d(i′ − j′ + 1) − 2d(i′ − j′) + d(i′ − j′ − 1))

= d(2) − d(1) − d(im − jm + 2) + d(im − jm + 1)

+ d(3) − d(2) − d(im − jm + 3) + d(im − jm + 2)

...

+ d(f ′(a) − im − 1) − d(f ′(a) − im − 2) − d(f ′(a) − jm − 1) + d(f ′(a) − jm − 2)

+ d(f ′(a) − im) − d(f ′(a) − im − 1) − d(f ′(a) − jm) + d(f ′(a) − jm − 1)

= d(f ′(a) − im) − d(jm − f ′(a)) − d(1) + d(jm − im − 1)

= d(f ′(a) − im) − d(L − f ′(a) + im) − d(1) + d(L − 1), (32)

where the last expression is obtained usingL = jm − im. Once again, we use the propertyd(x) =
d(−x). Similarly, by substitutingk′ = im + 1 in equation (16), we get

∑jm

j′=im+2
wab

2 (d(im − j′ + 2) − 2d(im − j′ + 1) + d(im − j′))

= d(0) − d(1) − d(jm − im − 1) + d(jm − im)

= d(0) − d(1) − d(L − 1) + d(L). (33)

By simplifying expression (30) using equations (32) and (33), the cost of the st-cut is given by
wab

2 (d(L − f ′(a) + im) + d(f ′(a) − im))

+ wab

2 (d(f ′(a) − im) − d(L − f ′(a) + im) − d(1) + d(L − 1))

+ wab

2 (d(0) − d(1) − d(L − 1) + d(L))

+ wabM + κab

2

= wabd(f ′(a) − (im + 1)) + wabd
′(f ′(a) − (im + 1)) + wabM + κab, (34)
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where the last expression is obtained using the definition ofd′(·) in equation (26) and the fact that
κab = wabd(L). This proves the Lemma.

In summary, property 1 tells us that the cost of the st-cut exactly models the sum of the unary
potentials. Properties 2 and 3 specify the cases where the cost of the st-cut exactly models the
pairwise potentials, while properties 4 and 5 specify the remaining cases where the cost of the st-cut
overestimates the pairwise potentials. In other words, theGibbs energy of the labellingf ′, and hence
the Gibbs energy offm+1, is at most equal to the cost of the st-MINCUT onGm.

Note that our graph construction is similar to that of Gupta and Tardos [9] with two notable ex-
ceptions: (i) we can handle any general truncated convex model and not just truncated linear as in
the case of [9]. This is achieved in part by using the graph construction of [29] which generalizes
Ishikawa’s previous work on linear metric [11]; and (ii) we have the freedom to choose the value of
L, while [9] fixed this value toM . A logical choice would be to use that value ofL which mini-
mizes the worst case multiplicative bound for a particular class of problems. The following analysis
obtains such a value ofL for both the truncated linear and the truncated quadratic models. Our worst
case multiplicative bounds are exactly those achieved by the LP relaxation (see [6]).

3 Analysis of the Algorithm

Before we begin our analysis, we require the following definitions. Letr ∈ [0, L−1] be a uniformly
distributed random integer. Usingr we define the following set of intervals

Sr = {[0, r], [r + 1, r + L], [r + L + 1, r + 2L], · · · , [., h − 1]}, (35)

whereh = |l| is the total number of labels associated with theMRF. We denote an optimal labelling
of theMRF by f∗. Given such a labellingf∗ and an intervalIm = [im + 1, jm] ∈ Sr, we define the
following five sets:

1. v(Im) ⊆ v such thatva ∈ v(Im) if, and only if,f∗(a) ∈ Im.

2. E(Im) ⊆ E such that(a, b) ∈ E(Im) if, and only if,f∗(a) ∈ Im andf∗(b) ∈ Im.

3. D1(Im) ⊆ E such that(a, b) ∈ E(Im) if, and only if,f∗(a) ∈ Im andf∗(b) /∈ Im.

4. D2(Im) ⊆ E such that(a, b) ∈ E(Im) if, and only if,f∗(a) /∈ Im andf∗(b) ∈ Im.

5. D(Im) = D1(Im)
⋃D2(Im).

In other words,v(Im) contains all the random variables which take an optimal labelling in Im,
E(Im) contains the set of all edges in the graphical model of theMRF whose endpoints take an
optimal labelling in the intervalIm, andD(Im) contains edges where only one endpoint takes an
optimal labelling inIm.

Clearly, the following equation holds true:
∑

va∈v

θ1
a;f∗(a) =

∑

Im∈Sr

∑

va∈v(Im)

θ1
a;f∗(a), (36)

sincef∗(a) belongs to one and only one interval inSr for all va ∈ v. In order to make the analysis
less cluttered, we introduce the following shorthand notation for some terms:

1. For(a, b) ∈ E(Im), we denotewabd(f∗(a) − f∗(b)) by em
ab.

2. For(a, b) ∈ D1(Im), we denotewabd(f∗(a)−(im+1))+wabd
′(f∗(a)−(im+1))+wabM

by em
a .

3. For(a, b) ∈ D2(Im), we denotewabd(f∗(b)−(im+1))+wabd
′(f∗(b)−(im+1))+wabM

by em
b .

We are now ready to prove our main results, starting with the following Lemma.

Lemma 3: At an iteration of our algorithm, given the current labelling fm and an intervalIm =
[im +1, jm], the new labellingfm+1 obtained by solving the st-MINCUT problem reduces the Gibbs
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energy by at least the following:
∑

va∈v(Im) θ1
a;fm(a) +

∑

(a,b)∈E(Im)
S

D(Im) θ2
ab;fm(a)fm(b)

−
(

∑

va∈v(Im) θ1
a;f∗(a) +

∑

(a,b)∈E(Im) em
ab (37)

+
∑

(a,b)∈D1(Im) em
a +

∑

(a,b)∈D2(Im) em
b

)

.

Proof: From the arguments in§ 2.2, it is clear that the Gibbs energy of the new labellingfm+1 is
bounded from above by the cost of the st-MINCUT. The cost of the st-MINCUT itself is bounded
from above by the cost of any other st-cut in the graphGm. Consider one such st-cut which results
in the following labelling:

f ′(a) =

{

f∗(a) if va ∈ v(Im)
fm(a) otherwise. (38)

We will now derive the cost of this st-cut using the properties in § 2.2. We consider the following
six cases:

1. For random variablesva /∈ v(Im) it follows from Property 1 that the cost of the st-cut will
include the unary potentials associated with such variables exactly, i.e.

∑

va /∈v(Im)

θ1
a;fm(a). (39)

2. For neighbouring random variables(a, b) /∈ E(Im)
⋃D(Im) it follows from Property 2 that

the cost of the st-cut will include the pairwise potentials associated with such neighbouring
variables exactly up to a constantκab, i.e.

∑

(a,b)/∈E(Im)
S

D(Im)

(

θ2
ab;fm(a)fm(b) + κab

)

. (40)

3. For random variablesva ∈ v(Im), it follows from Property 1 that the cost of the st-cut will
include the unary potentials associated with such variables exactly, i.e.

∑

va∈v(Im)

θ1
a;f∗(a). (41)

4. For neighbouring random variables(a, b) ∈ E(Im) it follows from Properties 3 and 4 that
the cost of the st-cut will include the following:

∑

(a,b)∈E(Im)

(em
ab + κab) . (42)

5. For neighbouring random variables(a, b) ∈ D1(Im) it follows from Property 5 that the
cost of the st-cut will include the following:

∑

(a,b)∈D1(Im)

(em
a + κab) . (43)

6. For neighbouring random variables(a, b) ∈ D2(Im) it follows from Property 5 that the
cost of the st-cut will include the following:

∑

(a,b)∈D2(Im)

(em
b + κab) . (44)

The Gibbs energy off ′ (i.e. Q(f ′,D; θ)), and henceQ(fm+1,D; θ), is at most the sum of
terms (39)-(44) minus

∑

(a,b)∈E
κab. It follows that the difference between the Gibbs energy of

the current labellingfm and the new labellingfm+1, i.eQ(fm,D; θ) − Q(fm+1,D; θ), is at least
∑

va∈v(Im) θ1
a;fm(a) +

∑

(a,b)∈E(Im)
S

D(Im) θ2
ab;fm(a)fm(b)

−
(

∑

va∈v(Im) θ1
a;f∗(a) +

∑

(a,b)∈E(Im) em
ab

+
∑

(a,b)∈D1(Im) em
a +

∑

(a,b)∈D2(Im) em
b

)

. (45)
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This proves the Lemma.

Let f be the final labelling obtained using our algorithm. Sincef is a local optimum with respect to
all intervalsIm, it follows that the term (37) should be non-positive for allIm (otherwise the Gibbs
energy could be further reduced thereby contradicting the fact thatf is the local optimum labelling).
In other words,

∑

va∈v(Im) θ1
a;f(a) +

∑

(a,b)∈E(Im)
S

D(Im) θ2
ab;f(a)f(b)

≤
(

∑

va∈v(Im) θ1
a;f∗(a) +

∑

(a,b)∈E(Im) em
ab

+
∑

(a,b)∈D1(Im) em
a +

∑

(a,b)∈D2(Im) em
b

)

, ∀Im. (46)

We sum the above inequality over allIm ∈ Sr. The summation of theLHS is at leastQ(f,D; θ).
Furthermore, using equation (36), the summation of the above inequality can be written as

Q(f,D; θ) ≤ ∑

va∈v
θ1

a;f∗(a) +

∑

Im∈Sr

(

∑

(a,b)∈E(Im) em
ab +

∑

(a,b)∈D1(Im) em
a +

∑

(a,b)∈D2(Im) em
b

)

. (47)

We now take the expectation of the above inequality over the uniformly distributed random integer
r ∈ [0, L−1]. TheLHS of the inequality and the first term on theRHS (i.e.

∑

θ1
a;f∗(a)) are constants

with respect tor. Hence, we get

Q(f,D; θ) ≤ ∑

va∈v
θ1

a;f∗(a) +

1
L

∑

r

∑

Im∈Sr

(

∑

(a,b)∈E(Im) em
ab +

∑

(a,b)∈D1(Im) em
a +

∑

(a,b)∈D2(Im) em
b

)

. (48)

We conclude by observing that this is the same bound that is obtained by theLP relaxation. Thus,
using the analysis of [6] we obtain the following results.

Lemma 4: Whend(·) is linear, i.e.d(x) = |x|, the following inequality holds true:

1
L

∑

r

∑

Im∈Sr

(

∑

(a,b)∈E(Im) em
ab +

∑

(a,b)∈D1(Im) em
a +

∑

(a,b)∈D2(Im) em
b

)

≤
(

2 + max
{

2M
L , L

M

})
∑

(a,b)∈E
θ2

ab;f∗(a)f∗(b). (49)

Proof: The following is a slight modification of the proof of Lemma 4.5 of [6] and is presented here
for the sake of completeness. Since we are dealing with the truncated linear metric, the termsem

ab,
em

a andem
b can be simplified as

em
ab = wab|f∗(a) − f∗(b)|,

em
a = wab(f

∗(a) − im − 1 + M),

em
b = wab(f

∗(b) − im − 1 + M). (50)

We begin by observing that theLHS of inequality (49) can be rewritten as

1

L

∑

(a,b)∈E





∑

E(Im)∋(a,b)

em
ab +

∑

D1(Im)∋(a,b)

em
a +

∑

D2(Im)∋(a,b)

em
b .



 (51)

In order to prove the Lemma, we consider the following three cases for two neighbouring random
variables(a, b) ∈ E .

Case I:d(f∗(a), f∗(b)) = |f∗(a) − f∗(b)| ≤ L and hence,θ2
ab;f∗(a)f∗(b) = wabM .

In this case, it is clear that(a, b) /∈ E(Im) for all intervalsIm since the length of each interval isL.
Furthermore, the conditions for(a, b) ∈ D1(Im) and(a, b) ∈ D2(Im) are given by

(a, b) ∈ D1(Im) ⇐⇒ im ∈ [f∗(a) − L, f∗(a) − 1],

(a, b) ∈ D2(Im) ⇐⇒ im ∈ [f∗(b) − L, f∗(b) − 1]. (52)
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In order to prove inequality (49), we observe that
∑

E(Im)∋(a,b) em
ab +

∑

D1(Im)∋(a,b) em
a +

∑

D2(Im)∋(a,b) em
b

= wab

(

∑f∗(a)−1
im=f∗(a)−L(M + f∗(a) − im − 1) +

∑f∗(b)−1
im=f∗(b)−L(M + f∗(b) − im − 1)

)

= wab

(

2LM +
∑f∗(a)−1

im=f∗(a)−L(f∗(a) − im − 1) +
∑f∗(a)−1

im=f∗(a)−L(f∗(a) − im − 1)
)

≤ wab

(

2LM + 2L2
)

= L
(

2 + L
M

)

θ2
ab;f∗(a)f∗(b), (53)

where the last expression is obtained using the fact thatθ2
ab;f∗(a)f∗(b) = wabM .

Case II:M ≤ d(f∗(a), f∗(b)) = |f∗(a) − f∗(b)| < L and hence,θ2
ab;f∗(a)f∗(b) = wabM .

We will assume, without loss of generality, thatf∗(a) ≤ f∗(b). In this case, the conditions for
(a, b) ∈ E(Im), (a, b) ∈ D1(Im) and(a, b) ∈ D2(Im) are given by

(a, b) ∈ E(Im) ⇐⇒ im ∈ [f∗(b) − L, f∗(a) − 1],

(a, b) ∈ D1(Im) ⇐⇒ im ∈ [f∗(a) − L, f∗(b) − L − 1],

(a, b) ∈ D2(Im) ⇐⇒ im ∈ [f∗(a), f∗(b) − 1]. (54)

Again, in order to prove inequality (49), we observe that
∑

E(Im)∋(a,b) em
ab +

∑

D1(Im)∋(a,b) em
a +

∑

D2(Im)∋(a,b) em
b

= wab

(

∑f∗(a)−1
im=f∗(b)−L(f∗(b) − f∗(a)) +

∑f∗(b)−L−1
im=f∗(a)−L(M + f∗(a) − im − 1)

+
∑f∗(b)−1

im=f∗(a)(M + f∗(b) − im − 1)
)

≤ wab (2L + 2M − (f∗(b) − f∗(a))) (f∗(b) − f∗(a))

≤ wabL(2M + L)

= L
(

2 + L
M

)

θ2
ab;f∗(a)f∗(b), (55)

where the last expression is obtained using the fact thatθ2
ab;f∗(a)f∗(b) = wabM .

Case III:d(f∗(a), f∗(b)) = |f∗(a)− f∗(b)| ≤ M and hence,θ2
ab;f∗(a)f∗(b) = wab|f∗(a)− f∗(b)|.

We will assume, without loss of generality, thatf∗(a) ≤ f∗(b). Similar to case II, the conditions
for (a, b) ∈ E(Im), (a, b) ∈ D1(Im) and(a, b) ∈ D2(Im) are given by

(a, b) ∈ E(Im) ⇐⇒ im ∈ [f∗(b) − L, f∗(a) − 1],

(a, b) ∈ D1(Im) ⇐⇒ im ∈ [f∗(a) − L, f∗(b) − L − 1],

(a, b) ∈ D2(Im) ⇐⇒ im ∈ [f∗(a), f∗(b) − 1]. (56)

Once again, we consider
∑

E(Im)∋(a,b) em
ab +

∑

D1(Im)∋(a,b) em
a +

∑

D2(Im)∋(a,b) em
b

= wab

(

∑f∗(a)−1
im=f∗(b)−L(f∗(b) − f∗(a)) +

∑f∗(b)−L−1
im=f∗(a)−L(M + f∗(a) − im − 1)

+
∑f∗(b)−1

im=f∗(a)(M + f∗(b) − im − 1)
)

≤ wab (2L + 2M − (f∗(b) − f∗(a))) (f∗(b) − f∗(a))

≤ wab(2L + 2M)(f∗(b) − f∗(a))

= L
(

2 + 2M
L

)

θ2
ab;f∗(a)f∗(b), (57)

where the last expression is obtained using the fact thatθ2
ab;f∗(a)f∗(b) = wab(f

∗(b) − f∗(a)).

Substituting inequalities (53), (55) and (57) in expression (51) and dividing both sides byL for all
(a, b) ∈ E , we obtain inequality (49). This proves the Lemma.
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Theorem 1: For the truncated linear metric, our algorithm obtains a multiplicative bound of2+
√

2
usingL =

√
2M .

The proof of the above theorem follows by substitutingL =
√

2M in inequality (49) and simplifying
inequality (48). Note that this bound is better than those obtained byα-expansion [5] (i.e.2M ) and
its generalization [9] (i.e.4). In fact, the bound of [9] can be obtained directly from the above
analysis by using the non-optimal assignment ofL = M .

Similarly, using Theorem 4 of [6], we obtain the following multiplicative bound for the truncated
quadratic semi-metric.

Theorem 2: For the truncated quadratic semi-metric, our algorithm obtains a multiplicative bound
of O(

√
M) usingL =

√
M .

Note that bothα-expansion and the approach of Gupta and Tardos provide no bounds for the above
case. The primal-dual method of [18] obtains a bound of2M which is clearly inferior to our guar-
antees.

4 Experiments

We tested our approach using both synthetic and standard real data. Below, we describe the experi-
mental setup and the results obtained in detail.

4.1 Synthetic Data

Experimental Setup We used100 random fields for both the truncated linear and truncated
quadratic models. The variablesv and neighbourhood relationshipE of the random fields described
a 4-connected grid graph of size50 × 50. Note that 4-connected grid graphs are widely used to
model several problems in Computer Vision [28]. Each variable was allowed to take one of20 pos-
sible labels, i.e.l = {l0, l1, · · · , l19}. The parameters of the random field were generated randomly.
Specifically, the unary potentialsθ1

a;i were sampled uniformly from the interval[0, 10] while the
weightswab, which determine the pairwise potentials, were sampled uniformly from [0, 5]. The
parameterM was also chosen randomly while taking care thatd(5) ≤ M ≤ d(10).

Results Fig. 3 shows the results obtained by our approach and five other state of the art algorithms:
αβ-swap,α-expansion,BP, TRW-S and the range move algorithm of [29]. We used publicly available
code for all previously proposed approaches with the exception of the range move algorithm5. As can
be seen from the figure, the most accurate approach is the method proposed in this paper, followed
closely by the range move algorithm. Recall that, unlike range move, our algorithm is guaranteed to
provide the same worst case multiplicative bounds as theLP relaxation. As expected, both the range
move algorithm and our method are slower thanαβ-swap andα-expansion (since each iteration
computes an st-MINCUT on a larger graph). However, they are faster thanTRW-S, which attempts to
minimize theLP relaxation, andBP. We note here that our implementation does not use any clever
tricks to speed up the max-flow algorithm (such as those described in [1]) which can potentially
decrease the running time by orders of magnitude.

4.2 Real Data - Stereo Reconstruction

Given twoepipolar rectifiedimagesD1 andD2 of the same scene, the problem of stereo reconstruc-
tion is to obtain a correspondence between the pixels of the images. This problem can be modelled
using a random field whose variables correspond to pixels of one image (sayD1) and take labels
from a set ofdisparitiesl = {0, 1, · · · , h− 1}. A disparity valuei for a random variablea denoting
pixel (x, y) in D1 indicates that its corresponding pixel lies in location(x + i, y) in the second
image.

For the above random field formulation, the unary potentialswere defined as in [3] and were trun-
cated at 15. As is typically the case, we chose the neighbourhood relationshipE to define a 4-

5When usingα-expansion with the truncated quadratic semi-metric, all edges with negative capacities in
the graph construction were removed, similar to the experiments in [28].
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(a) (b)

Figure 3:Results of the synthetic experiment.(a) Truncated linear metric.(b) Truncated quadratic
semi-metric. The x-axis shows the time taken in seconds. They-axis shows the average Gibbs energy
obtained over all 100 random fields using the six algorithms.The lower blue curve is the value of
the dual obtained byTRW-S. In both the cases, our method and the range move algorithm provide
the most accurate solution and are faster thanTRW-S andBP.

neighbourhood grid graph. The number of disparitiesh was set to20. We experimented using the
following truncated convex potentials:

θ2
ab;ij = 50 min{|i − j|, 10},

θ2
ab;ij = 50 min{(i − j)2, 100}. (58)

The above form of pairwise potentials encourage neighbouring pixels to take similar disparity values
which corresponds to our expectations of finding smooth surfaces in natural images. Truncation of
pairwise potentials is essential to avoid oversmoothing, as observed in [5, 29]. Note that using
spatially varying weightswab provides better results. However, the main aim of this experiment is
to demonstrate the accuracy and speed of our approach and notto design the best possible Gibbs
energy. Fig. 4 shows the results obtained using various algorithms when using the truncated linear
metric on a standard stereo pair (Tsukuba). Table 2 providesthe value of the Gibbs energy and the
total time taken by all the approaches for three stereo pairs. Similar to the synthetic experiments,
the range move algorithm and our method provide the most accurate solutions while taking less
time thanTRW-S andBP. Our method does marginally better than range move. However, we would
again like to emphasize that unlike our method the range movealgorithm provides no theoretical
guarantees about the quality of the solution.

5 Discussion

We have presented an st-MINCUT based algorithm for obtaining the approximateMAP estimate of
discrete random fields with truncated convex pairwise potentials. Our method improves the mul-
tiplicative bound for the truncated linear metric comparedto [5, 9] and provides the best known
bound for the truncated quadratic semi-metric. Due to the use of only the st-MINCUT problem in
its design, it is faster than previous approaches based on the LP relaxation. In fact, its speed can
be further improved by a large factor using clever techniques such as those described in [16] (for
convex unary potentials) and/or [1] (for general unary potentials). Furthermore, it overcomes the
well-known deficiencies ofTRW and its variants. Experiments on synthetic and real data problems
demonstrate its effectiveness compared to several state ofthe art algorithms.

Our method can easily be extended to handle truncated submodular models by using the graph
construction of [24] instead of [29]. However, the resulting multiplicative bounds would start to
depend on the value of the pairwise potentials thereby making the analysis cluttered. For this reason,
we have restricted our discussion to the truncated convex model.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Tsukuba stereo pair.(a) First image. (b) Second image.(c) Ground truth disparity
map. (d)-(i) Results obtained using various algorithms: in the above order, αβ-swap algorithm,
α-expansion,TRW-S, BP, the range move algorithm of [29] and our approach.

A slight modification of Theorem 3.7 of [9] also proves that ifour algorithm is run for
O(h/L)(log Q(f1,D; θ) + log ǫ−1) iterations (wheref1 is the initial labelling, andǫ > 0), then
the expected value of the Gibbs energy would be at most(2 +

√
2+ ǫ)Q(f∗,D; θ) for the truncated

linear metric and(O(
√

M) + ǫ)Q(f∗,D; θ) for the truncated quadratic semi-metric (wheref∗ is
an optimal labelling). In other words, our method provides the same guarantees as theLP relaxation
in polynomial time. Although theoretically interesting, the practical implications of this result are
minimal, since in most scenarios we will be able to run our algorithm for a sufficient number of
iterations so as to end up in the local minimum over all intervalsIm. In fact, in all our experiments
we reached the local minimum in less than5 iterations.

The analysis in section 3 shows that, for the truncated linear and truncated quadratic models, the
bound achieved by our move making algorithm over intervals of any lengthL is equal to that of
rounding theLP relaxation’s optimal solution using the same intervals [6]. This equivalence also
extends to the Potts model (in which caseα-expansion provides the same bound as theLP relaxation
when using the rounding scheme of [12]). A natural question would be to ask about the relation-
ship between move making algorithms and the rounding schemes used in convex relaxations. Note
that despite recent efforts [18] which analyze certain movemaking algorithms in the context of
primal-dual approaches for theLP relaxation, not many results are known about their connection
with randomize rounding schemes. Although the discussion in section 3 cannot be trivially gener-
alized to all random fields, it offers a first step towards answering this question. We believe that
further exploration in this direction would help improve the understanding of the nature of theMAP
estimation problem, e.g. how to derandomize approaches based on convex relaxations. Furthermore,
it would also help design efficient move making algorithms for more complex relaxations such as
those described in [20].
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Algorithm Energy-1 Time-1(s) Energy-2 Time-2(s)
αβ-swap 645227 28.86 709120 20.04

α-expansion 634931 9.52 723360 9.78
TRW-S 634720 94.86 651696 226.07

BP 662108 170.67 2155759 244.71
Range Move 634720 39.75 651696 80.40

Our Approach 634720 66.13 651696 80.70

(a)

Algorithm Energy-1 Time-1(s) Energy-2 Time-2(s)
αβ-swap 1056109 35.00 1198029 52.98

α-expansion 1052860 15.16 1320088 11.95
TRW-S 1053341 142.19 1057371 339.02

BP 1117782 180.65 2443796 368.14
Range Move 1052762 100.49 1057041 168.28

Our Approach 1052762 129.30 1057041 155.98

(b)

Algorithm Energy-1 Time-1(s) Energy-2 Time-2(s)
αβ-swap 3678200 18.48 3707268 20.25

α-expansion 3677950 11.73 3687874 8.79
TRW-S 3677578 131.65 3679563 332.94

BP 3789486 272.06 5180705 331.36
Range Move 3686844 97.23 3679552 141.78

Our Approach 3613003 120.14 3679552 191.20

(c)

Table 2:The energy obtained and the time taken by the algorithms usedin the stereo reconstruction
experiment. Columns 2 and 3 : truncated linear metric. Columns 4 and 5: truncated quadratic semi-
metric. (a) Tsukuba.(b) Venus.(c) Teddy. The lowest energy obtained in each case is indicated
using bold font.

We thank the reviewers for careful reading of the submitted manuscript and for helpful comments
which improved the clarity of the paper.
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