
Bayesian Kernel Shaping for Learning Control

Jo-Anne Ting1, Mrinal Kalakrishnan1, Sethu Vijayakumar2 and Stefan Schaal1,3

1Computer Science, U. of Southern California, Los Angeles, CA 90089, USA
2School of Informatics, University of Edinburgh, Edinburgh, EH9 3JZ, UK

3ATR Computational Neuroscience Labs, Kyoto 619-02, Japan

Abstract

In kernel-based regression learning, optimizing each kernel individually is useful
when the data density, curvature of regression surfaces (ordecision boundaries)
or magnitude of output noise varies spatially. Previous work has suggested gradi-
ent descent techniques or complex statistical hypothesis methods for local kernel
shaping, typically requiring some amount of manual tuning of meta parameters.
We introduce a Bayesian formulation of nonparametric regression that, with the
help of variational approximations, results in an EM-like algorithm for simulta-
neous estimation of regression and kernel parameters. The algorithm is computa-
tionally efficient, requires no sampling, automatically rejects outliers and has only
one prior to be specified. It can be used for nonparametric regression with local
polynomials or as a novel method to achieve nonstationary regression with Gaus-
sian processes. Our methods are particularly useful for learning control, where
reliable estimation of local tangent planes is essential for adaptive controllers and
reinforcement learning. We evaluate our methods on severalsynthetic data sets
and on an actual robot which learns a task-level control law.

1 Introduction

Kernel-based methods have been highly popular in statistical learning, starting with Parzen windows,
kernel regression, locally weighted regression and radialbasis function networks, and leading to
newer formulations such as Reproducing Kernel Hilbert Spaces, Support Vector Machines, and
Gaussian process regression [1]. Most algorithms start with parameterizations that are the same for
all kernels, independent of where in data space the kernel isused, but later recognize the advantage
of locally adaptive kernels [2, 3, 4]. Such locally adaptivekernels are useful in scenarios where the
data characteristics vary greatly in different parts of theworkspace (e.g., in terms of data density,
curvature and output noise). For instance, in Gaussian process (GP) regression, using a nonstationary
covariance function, e.g., [5], allows for such a treatment. Performing optimizations individually for
every kernel, however, becomes rather complex and is prone to overfitting due to a flood of open
parameters. Previous work has suggested gradient descent techniques with cross-validation methods
or involved statistical hypothesis testing for optimizingthe shape and size of a kernel in a learning
system [6, 7].

In this paper, we consider local kernel shaping by averagingover data samples with the help of
locally polynomial models and formulate this approach, in aBayesian framework, for both function
approximation with piecewise linear models and nonstationary GP regression. Our local kernel
shaping algorithm is computationally efficient (capable ofhandling large data sets), can deal with
functions of strongly varying curvature, data density and output noise, and even rejects outliers
automatically. Our approach to nonstationary GP regression differs from previous work by avoiding
Markov Chain Monte Carlo (MCMC) sampling [8, 9] and by exploiting the full nonparametric
characteristics of GPs in order to accommodate nonstationary data.

One of the core application domains for our work is learning control, where computationally efficient
function approximation and highly accurate local linearizations from data are crucial for deriving
controllers and for optimizing control along trajectories[10]. The high variations from fitting noise,
seen in Fig. 3, are harmful to the learning system, potentially causing the controller to be unstable.
Our final evaluations illustrate such a scenario by learningan inverse kinematics model for a real
robot arm.

2 Bayesian Local Kernel Shaping

We develop our approach in the context of nonparametric locally weighted regression with lo-
cally linear polynomials [11], assuming, for notational simplicity, only a one-dimensional output—
extensions to multi-output settings are straightforward.We assume a training set ofN samples,
D = {xi, yi}

N
i=1, drawn from a nonlinear functiony = f(x) + ε that is contaminated with mean-

zero (but potentially heteroscedastic) noiseε. Each data sample consists of ad-dimensional input
vectorxi and an outputyi. We wish to approximate a locally linear model of this function at a
query pointxq ∈ <d×1 in order to make a predictionyq = bT xq, whereb ∈ <d×1. We assume
the existence of a spatially localized weighting kernelwi = K (xi,xq,h) that assigns a weight to
every{xi, yi} according to its Euclidean distance in input space from the query pointxq. A popular
choice forK is the Gaussian kernel, but other kernels may be used as well [11]. The bandwidth
h ∈ <d×1 of the kernel is the crucial parameter that determines the local model’s quality of fit. Our
goal is to find a Bayesian formulation of determiningb andh simultaneously.

2.1 Model

yi

h
d

É b
d

h
1

b
2

i = 1,..,N

x
i1

É

É

b
1

z
i1

z
idz

i2

w
i1 w

i2
w
idx

i2
x
id

!
z2 !

zd!
z1

h
2

!
2

Figure 1: Graphical model. Random variables are in
circles, and observed random variables are in shaded
double circles.

For the locally linear model at the query
point xq, we can introduce hidden ran-
dom variablesz [12] and modify the linear
modelyi = bT xi so thatyi =

∑d
m=1zim+

ε, wherezim = bT
mxim + εzm andεzm ∼

Normal(0, ψzm), ε ∼ Normal
(

0, σ2
)

are
both additive noise terms. Note thatxim =
[xim 1]T andbm = [bm bm0]

T , wherexim

is themth coefficient ofxi, bm is themth
coefficient ofb andbm0 is the offset value.
The z variables allow us to derive compu-
tationally efficientO(d) EM-like updates,
as we will see later. The prediction at the
query pointxq is then

∑d
m bT

mxqm. We as-
sume the following prior distributions for our model, showngraphically in Fig. 1:

p(yi|zi) ∼ Normal
(

1T zi, σ
2
)

p(bm|ψzm) ∼ Normal(0, ψzmΣbm,0)

p(zim|xim) ∼ Normal
(

bT
mxim, ψzm

)

p(ψzm) ∼ Scaled-Inv-χ2 (nm0, ψzm,0)

where1 is a vector of1s, zi ∈ <d×1, zim is themth coefficient ofzi, andΣbm,0 is the prior
covariance matrix ofbm and a2 × 2 diagonal matrix.nm0 andσ2

mN0 are the prior parameters of
the Scaled-inverse-χ2 distribution (nm0 is the number of degrees of freedom parameter andσ2

mN0 is
the scale parameter). The Scaled-Inverse-χ2 distribution was used forψzm since it is the conjugate
prior for the variance parameter of a Gaussian distribution.

In contrast to classical treatments of Bayesian weighted regression [13] where the weights enter
as a heteroscedastic correction on the noise variance of each data sample, weassociate a scalar
indicator-like weight,wi ∈ {0, 1}, with each sample {xi, yi} inD. The sample is fully included in
the local model ifwi = 1 and excluded ifwi = 0. We define the weightwi to bewi =

∏d
m=1 wim,

wherewim is the weight component in themth input dimension. While previous methods model the
weighting kernelK as some explicit function, we model the weightswim as Bernoulli-distributed
random variables, i.e.,p(wim) ∼ Bernoulli(qim), choosing a symmetric bell-shaped function for the
parameterqim: qim = 1/(1 + (xim − xqm)2rhm). xqm is themth coefficient ofxq, hm is themth

coefficient ofh, andr > 0 is a positive integer1. As pointed out in [11], the particular mathematical
formulation of a weighting kernel is largely computationally irrelevant for locally weighted learning.
Our choice of function forqim was dominated by the desire to obtain analytically tractable learning
updates. We place a Gamma prior over the bandwidthhm, i.e., p(hm) ∼ Gamma(ahm0, bhm0)
whereahm0 andbhm0 are parameters of the Gamma distribution, to ensure that a positive weighting
kernel width.

2.2 Inference

We can treat the entire regression problem as an EM learning problem [14, 15] and maximize the log
likelihood log p(y|X) for generating the observed data. We can maximize this incomplete log likeli-
hood by maximizing the expected value of the complete log likelihoodp(y,Z,b,w,h, σ2, ψz|X) =
∏N

i=1 p(yi, zi,b, wi,h, σ
2, ψz|xi). In our model, each data samplei has an indicator-like scalar

weightwi associated with it, allowing us to express the complete log likelihoodL, in a similar
fashion to mixture models, as:

L = log

[

N
∏

i=1

[

[

p(yi|zi, σ
2)p(zi|xi,b, ψz)

]wi

d
∏

m=1

p(wim)

]

d
∏

m=1

p(bm|ψzm)p(ψzm)p(hm)p(σ2)

]

Expanding thelog p(wim) term from the expression above results in a problematic− log(1 +

(xim − xqm)
2r

) term that prevents us from deriving an analytically tractable expression for the
posterior ofhm. To address this, we use a variational approach on concave/convex functions sug-
gested by [16] to produce analytically tractable expressions. We can find a lower bound on the
term so that− log(1 +

(

xim − xqm)2r
)

≥ −λim (xim − xqm)
2r
hm, whereλim is a variational

parameter to be optimized in the M-step of our final EM-like algorithm. Our choice of weighting
kernel allows us to find a lower bound toL in this manner. We explored the use of other weighting
kernels (e.g., a quadratic negative exponential), but had issues with finding a lower bound to the
problematic terms inlog p(wim) such that analytically tractable inference forhm could be done.
The resulting lower bound toL is L̂; due to lack of space, we give the expression forL̂ in the ap-
pendix. The expectation of̂L should be taken with respect to the true posterior distribution of all
hidden variablesQ(b, ψz, z,h). Since this is an analytically tractable expression, a lower bound
can be formulated using a technique from variational calculus where we make a factorial approxi-
mation of the true posterior, e.g.,Q(b, ψz, z,h) = Q(b, ψz)Q(h)Q(z) [15], that allows resulting
posterior distributions over hidden variables to become analytically tractable. The posterior ofwim,
p(wim = 1|yi, zi,xi,θ, wi,k 6=m), is inferred using Bayes’ rule:

p(yi, zi|xi,θ, wi,k 6=m, wim = 1)
Qd

t=1,t6=m
〈wit〉p(wim = 1)

p(yi, zi|xi,θ, wi,k 6=m, wim = 1)
Q

d
t=1,t6=m

〈wit〉p(wim = 1) + p(wim = 0)
(1)

whereθ = {b, ψz,h} andwi,k 6=m denotes the set of weights{wik}
d
k=1,k 6=m. For the dimension

m, we account for the effect of weights in the otherd − 1 dimensions. This is a result ofwi

being defined as the product of weights in all dimensions. Theposterior mean ofwim is then
〈p(wim = 1|yi, zi,xi,θ, wi,k 6=m)〉, and〈wi〉 =

∏d
m=1 〈wim〉, where〈.〉 denotes the expectation

operator. We omit the full set of posterior EM update equations (please refer to the appendix for
this) and list only the posterior updates forhm, wim, bm andzi:

Σbm
=

(

Σ−1
bm,0 +

N
∑

i=1

〈wi〉ximxT
im

)−1

Σzi|yi,xi
=

ΨzN

〈wi〉
−

1

si

(

ΨzN

〈wi〉
11T ΨzN

〈wi〉

)

〈bm〉 = Σbm

(

N
∑

i=1

〈wi〉 〈zim〉xim

)

〈zi〉 =
ΨzN1

si 〈wi〉
+

(

Id,d −
ΨzN11T

si 〈wi〉

)

bxi

〈wim〉 =
qimA

Qd
k=1,k 6=m

〈wik〉

i

qimA
Q

d
k=1,k 6=m

〈wik〉

i + 1 − qim

〈hm〉 =
ahm0 +N −

∑N
i=1 〈wim〉

bhm0 +
∑N

i=1 λim (xim − xqm)
2r

1(xim − xqm) is taken to the power2r in order to ensure that the resulting expression is positive. Adjusting
r affects how long the tails of the kernel are. We user = 2 for all our experiments.

whereId,d is ad × d identity matrix,bxi is ad by 1 vector with coefficients〈bm〉
T

xim, 〈wi〉 =
∏d

m=1 〈wim〉, ΨzN is a diagonal matrix withψzN on its diagonal,si = σ2 +1T ΨzN

〈wi〉
1 (to avoid di-

vision by zero,〈wi〉 needs to be capped to some small non-zero value),qim = λim = 1/(1+(xim−

xqm)2r 〈hm〉), andAi = N(yi;1
T 〈zi〉 , σ

2)
∏d

m=1N(zim; 〈bm〉
T

xim, ψzm). Closer examination
of the expression for〈bm〉 shows that it is a standard Bayesian weighted regression update [13], i.e.,
a data samplei with lower weightwi will be downweighted in the regression. Since the weights are
influenced by the residual error at each data point (see posterior update for〈wim〉), an outlier will
be downweighted appropriately and eliminated from the local model. Fig. 2 shows how local kernel
shaping is able to ignore outliers that a classical GP fits.

−1 0 1

−0.5

0

0.5

1

1.5

2

2.5

3

x

y

Training data
Stationary GP
Kernel Shaping

Figure 2: Effect of outliers (in
black circles)

A few remarks should be made regarding the initialization ofpriors
used in the posterior EM updates.Σbm,0 can be set to106I to
reflect a large uncertainty associated with the prior distribution of
b. The initial noise variance,ψzm,0, should be set to the best guess
on the noise variance. To adjust the strength of this prior,nm0 can
be set to the number of samples one believes to have seen with
noise varianceψzm,0 Finally, the initialh of the weighting kernel
should be set so that the kernel is broad and wide. We use values of
ahm0 = bhm0 = 10−6 so thathm0 = 1 with high uncertainty. Note
that some sort of initial belief about the noise level is needed to
distinguish between noise and structure in the training data. Aside
from the initial prior onψzm, we used the same priors for all data
sets in our evaluations.

2.3 Computational Complexity

For one local model, the EM update equations havea computational complexity of O(Nd) per EM
iteration, whered is the number input dimensions andN is the size of the training set. This efficiency
arises from the introduction of the hidden random variableszi, which allows〈zi〉 andΣzi|yi,xi

to
be computed inO(d) and avoids ad × d matrix inversion which would typically requireO(d3).
Some nonstationary GP methods, e.g., [5], requireO(N3) + O(N2) for training and prediction,
while other more efficient stationary GP methods, e.g., [17], requireO(M2N) + O(M2) training
and prediction costs (whereM << N is the number of pseudoinputs used in [17]). Our algorithm
requiresO(NdIEM), whereIEM is the number of EM iterations—with a maximal cap of1000
iterations used. Our algorithm also does not require any MCMC sampling as in [8, 9], making it
more appealing to real-time applications.

3 Extension to Gaussian Processes

We can apply the algorithm in section 2 not only to locally weighted learning with linear models, but
also to derive a nonstationary GP method. A GP is defined by a mean and and a covariance function,
where the covariance functionK captures dependencies between any two points as a function of
the corresponding inputs, i.e.,k (xi,xj) = cov

(

f(xi), f(x′
j)
)

, wherei, j = 1, .., N . Standard GP
models use a stationary covariance function, where the covariance between any two points in the
training data is a function of the distances|xi − xj |, not of their locations. Stationary GPs perform
suboptimally for functions that have different propertiesin various parts of the input space (e.g.,
discontinuous functions) where the stationary assumptionfails to hold. Various methods have been
proposed to specify nonstationary GPs. These include defining a nonstationary Matérn covariance
function [5], adopting a mixture of local experts approach [18, 8, 9] to use independent GPs to
cover data in different regions of the input space, and usingmultidimensional scaling to map a
nonstationary spatial GP into a latent space [19].

Given the data setD drawn from the functiony = f(x)+ε, as previously introduced in section 2, we
propose an approach to specify a nonstationary covariance function. Assuming the use of a quadratic
negative exponential covariance function, the covariancefunction of a stationary GP isk(xi,xj) =

v2
1 exp(−0.5

∑d
m=1 hm(xim − x′jm)2) + v0, where the hyperparameters{h1, h2, ..., hd, v0, v1} are

optimized. In a nonstationary GP, the covariance function could then take the form2 k(xi,xj) =

v2
1 exp

(

−0.5
∑d

m=1(xim − xjm)2
himhjm

(him+hjm)

)

+v0, wherehim is the bandwidth of the local model

centered atxim andhjm is the bandwidth of the local model centered atxjm. We learn first the
values of{him}

d
m=1 for all training data samplesi = 1, ..., N using our proposed local kernel

shaping algorithm and then optimize the hyperparametersv0 andv1. To make a prediction for a test
samplexq, we learn also the values of{hqm}

d

m=1, i.e., the bandwidth of the local model centered at
xq. Importantly, since the covariance function of the GP is derived from locally constant models, we
learn with locally constant, instead of locally linear, polynomials. We user = 1 for the weighting
kernel in order keep the degree of nonlinearity consistent with that in the covariance function (i.e.,
quadratic). Even though the weighting kernel used in the local kernel shaping algorithm is not a
quadratic negative exponential, it has a similar bell shape, but with a flatter top and shorter tails.
Because of this, our augmented GP is an approximated form of anonstationary GP. Nonetheless,
it is able to capture nonstationary properties of the function f without needing MCMC sampling,
unlike previously proposed nonstationary GP methods [8, 9].

4 Experimental Results

4.1 Synthetic Data

First, we show our local kernel shaping algorithm’s bandwidth adaptation abilities on several syn-
thetic data sets, comparing it to a stationary GP and our proposed augmented nonstationary GP.
For the ease of visualization, we consider the following one-dimensional functions, similar to those
in [5]: i) a function with a discontinuity, ii) a spatially inhomogeneous function, and iii) a straight
line function. The data set for function i) consists of 250 training samples, 201 test inputs (evenly
spaced across the input space) and output noise withσ2 = 0.3025; the data set for function ii) con-
sists of 250 training samples, 101 test inputs and an output signal-to-noise ratio (SNR) of 10; and
the data set for function iii) has 50 training samples, 21 test inputs and an output SNR of 100.

Fig. 3 shows the predicted outputs of a stationary GP, augmented nonstationary GP and the local
kernel shaping algorithm for data sets i)-iii). The local kernel shaping algorithm smoothes over
regions where a stationary GP overfits and yet, it still manages to capture regions of highly varying
curvature, as seen in Figs. 3(a) and 3(b). It correctly adjusts the bandwidthsh with the curvature
of the function. When the data looks linear, the algorithm opens up the weighting kernel so that
all data samples are considered, as Fig. 3(c) shows. Our proposed augmented nonstationary GP
also can handle the nonstationary nature of the data sets as well, and its performance is quantified
in Table 1. Returning to our motivation to use these algorithms to obtain linearizations for learning
control, it is important to realize that the high variationsfrom fitting noise, as shown by the stationary
GP in Fig. 3, are detrimental for learning algorithms, as theslope (or tangent hyperplane, for high-
dimensional data) would be wrong.

Table 1 reports the normalized mean squared prediction error (nMSE) values for function i) and
function ii) data sets, averaged over 20 random data sets. Fig. 4 shows results of the local kernel
shaping algorithm and the proposed augmented nonstationary GP on the “real-world” motorcycle
data set [20] consisting of 133 samples (with 80 equally spaced input query points used for predic-
tion). We also show results from a previously proposed MCMC-based nonstationary GP method: an
alternate infinite mixture of GP experts [9]. We can see that the augmented nonstationary GP and
the local kernel shaping algorithm both capture the leftmost flatter region of the function, as well as
some of the more nonlinear and noisier regions after 30msec.

4.2 Robot Data

Next, we move on to an example application: learning an inverse kinematics model for a 3 degree-of-
freedom (DOF) haptic robot arm (manufactured by SensAble, shown in Fig. 5(a)) in order to control
the end-effector along a desired trajectory. This will allow us to verify that the kernel shaping algo-

2This is derived from the definition ofK as a positive semi-definite matrix, i.e. where the integral is the
product of two quadratic negative exponentials—one with parameterhim and the other with parameterhjm.

−2 −1 0 1 2
−4

−2

0

2

x

y

−2 −1 0 1 2

−1

0

1

2

x

y

Training data
Stationary GP
Aug GP
Kernel Shaping

−2 −1 0 1 2
−2

−1

0

1

2

x

y

0

1

w

−2 −1 0 1 2
10

0

10
3

10
7

x

h

w
xq

(a) Function i)

0

1

w

−2 −1 0 1 2
10

0

10
6

x

h

(b) Function ii)

0

1

w

−2 −1 0 1 2

10
−6

10
0

10
6

x

h

(c) Function iii)

Figure 3: Predicted outputs using a stationary GP, our augmented nonstationary GP and local kernel
shaping. Figures on the bottom show the bandwidths learnt bylocal kernel shaping and the corre-
sponding weighting kernels (in dotted black lines) for input query points (shown in red circles).

rithm can successfully deal with a large, noisy real-world data set with outliers and non-stationary
properties—typical characteristics of most control learning problems.

We collected60, 000 data samples from the arm while it performed random sinusoidal movements
within a constrained box volume of Cartesian space. Each sample consists of the arm’s joint angles
q, joint velocitiesq̇, end-effector position in Cartesian spacex, and end-effector velocitieṡx. From
this data, we first learn a forward kinematics model:ẋ = J(q)q̇, whereJ(q) is the Jacobian matrix.
The transformation froṁq to ẋ can be assumed to be locally linear at a particular configuration q
of the robot arm. We learn the forward model using kernel shaping, building a local model around
each training point only if that point is not already sufficiently covered by an existing local model
(e.g., having an activation weight of less than 0.2). Using insights into robot geometry, we localize
the models only with respect toq while the regression of each model is trained only on a mapping
from q̇ to ẋ—these geometric insights are easily incorporated as priorsin the Bayesian model. This
procedure resulted in56 models being built to cover the entire space of training data.

We artificially introduce a redundancy in our inverse kinematics problem on the 3-DOF arm by
specifying the desired trajectory(x, ẋ) only in terms ofx, z positions and velocities, i.e., the move-
ment is supposed to be in a vertical plane in front of the robot. Analytically, the inverse kinematics
equation isq̇ = J#(q)ẋ−α(I−J#J) ∂g

∂q
, whereJ#(q) is the pseudo-inverse of the Jacobian. The

second term is an optimal solution to the redundancy problem, specified here by a cost functiong
in terms of joint anglesq. To learn a model forJ#, we can reuse the local regions ofq from the
forward model, whereJ# is also locally linear. The redundancy issue can be solved byapplying
an additional weight to each data point according to a rewardfunction [21]. In our case, the task is
specified in terms of{ẋ, ż}, so we define a reward based on a desiredy coordinate,ydes, that we
would like to enforce as a soft constraint. Our reward function isg = e−

1

2
h(k(ydes−y)−ẏ)2 , where

k is a gain andh specifies the steepness of the reward. This ensures that the learnt inverse model
chooses a solution which produces aẏ that pushes they coordinate towardydes. We invert each
forward local model using a weighted linear regression, where each data point is weighted by the
weight from the forward model and additionally weighted by the reward.

We test the performance of this inverse model (Learnt IK) in afigure-eight tracking task as shown
in Fig. 5(b). As seen, the learnt model performs as well as theanalytical inverse kinematics solution
(IK), with root mean squared tracking errors in positions and velocities very close to that of the

Table 1: Average normalized mean squared prediction error values, for a stationary GP model, our
augmented nonstationary GP, local kernel shaping—averagedover 20 random data sets.

Method Function i) Function ii)
Stationary GP 0.1251 ± 0.013 0.0230 ± 0.0047

Augmented nonstationary GP 0.0110 ± 0.0078 0.0212 ± 0.0067
Local Kernel Shaping 0.0092 ± 0.0068 0.0217 ± 0.0058

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

Time (ms)

A
c
c
e

le
ra

ti
o

n
 (

g
)

Training Data

AiMoGPE

SingleGP

(A)(a) Alternate infinite mix. of GPs

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

Time (ms)

A
cc

el
er

at
io

n
(g

)

Training data
Aug GP
Stationary GP

(b) Augmented nonstationary GP

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

Time (ms)

A
cc

el
er

at
io

n
(g

)

Training data
Kernel Shaping
Stationary GP

(c) Local Kernel Shaping

Figure 4: Motorcycle impact data set from [20], with predicted results shown for our augmented
GP and local kernel shaping algorithms. Results from the alternate infinite mixture of GP experts
(AiMoGPE) are taken from [9].

analytical solution. This demonstrates that kernel shaping is an effective learning algorithm for use
in robot control learning applications.

Applying any arbitrary nonlinear regression method (such as a GP) to the inverse kinematics problem
would, in fact, lead to unpredictably bad performance. The inverse kinematics problem is a one-to-
many mapping and requires careful design of a learning problem to avoid problems with non-convex
solution spaces [22]. Our suggested method of learning linearizations with a forward mapping
(which is a proper function), followed by learning an inverse mapping within the local region of
the forward mapping, is one of the few clean approaches to theproblem. Instead of using locally
linear methods, one could also use density-based estimation techniques like mixture models [23].
However, these methods must select the correct mode in orderto arrive at a valid solution, and
this final step may be computationally intensive or involve heuristics. For these reasons, applying
a MCMC-type approach or GP-based method to the inverse kinematics problem was omitted as a
comparison.

5 Discussion

We presented a full Bayesian treatment of nonparametric local multi-dimensional kernel adaptation
that simultaneously estimates the regression and kernel parameters. The algorithm can also be inte-
grated into nonlinear algorithms, offering a valuable and flexible tool for learning. We show that our
local kernel shaping method is particularly useful for learning control, demonstrating results on an
inverse kinematics problem, and envision extensions to more complex problems with redundancy,

(a) Robot arm

−0.1 −0.05 0 0.05 0.1
−0.1

0

0.1

0.2

x (m)

z
(m

)

Desired
Analytical IK

−0.1 −0.05 0 0.05 0.1
−0.1

0

0.1

0.2

x (m)

z
(m

)

Desired
Learnt IK

(b) Desired versus actual trajectories

Figure 5: Desired versus actual trajectories for SensAble Phantom robot arm

e.g., learning inverse dynamics models of complete humanoid robots. Note that our algorithm re-
quires only one prior be set by the user, i.e., the prior on theoutput noise. All other biases are
initialized the same for all data sets and kept uninformative. In its current form, our Bayesian kernel
shaping algorithm is built for high-dimensional inputs dueto its low computational complexity—
it scales linearly with the number of input dimensions. However, numerical problems may arise
in case of redundant and irrelevant input dimensions. Future work will address this issue through
the use of an automatic relevant determination feature. Other future extensions include an online
implementation of the local kernel shaping algorithm.

References

[1] C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In David S. Touretzky,
Michael C. Mozer, and Michael E. Hasselmo, editors,In Advances in Neural Information Processing
Systems 8, volume 8. MIT Press, 1995.

[2] J. H. Friedman. A variable span smoother. Technical report, Stanford University, 1984.

[3] T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks.
Science, 247:213–225, 1990.

[4] J. Fan and I. Gijbels.Local polynomial modeling and its applications. Chapman and Hall, 1996.

[5] C. J. Paciorek and M. J. Schervish. Nonstationary covariance functions for Gaussian process regression.
In Advances in Neural Information Processing Systems 16. MIT Press, 2004.

[6] J. Fan and I. Gijbels. Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth
and spatial adaptation.Journal of the Royal Statistical Society B, 57:371–395, 1995.

[7] S. Schaal and C.G. Atkeson. Assessing the quality of learned localmodels. In G. Tesauro J. Cowan
and J. Alspector, editors,Advances in Neural Information Processing Systems, pages 160–167. Morgan
Kaufmann, 1994.

[8] C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussianprocesses. InAdvances in Neural
Information Processing Systems 14. MIT Press, 2002.

[9] E. Meeds and S. Osindero. An alternative infinite mixture of Gaussianprocess experts. InAdvances in
Neural Information Processing Systems 17. MIT Press, 2005.

[10] C. Atkeson and S. Schaal. Robot learning from demonstration. InProceedings of the 14th international
conference on Machine learning, pages 12–20. Morgan Kaufmann, 1997.

[11] C. Atkeson, A. Moore, and S. Schaal. Locally weighted learning.AI Review, 11:11–73, April 1997.

[12] A. D’Souza, S. Vijayakumar, and S. Schaal. The Bayesian backfitting relevance vector machine. In
Proceedings of the 21st International Conference on Machine Learning. ACM Press, 2004.

[13] A. Gelman, J. Carlin, H.S. Stern, and D.B. Rubin.Bayesian Data Analysis. Chapman and Hall, 2000.

[14] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm.
Journal of Royal Statistical Society. Series B, 39(1):1–38, 1977.

[15] Z. Ghahramani and M.J. Beal. Graphical models and variationalmethods. In D. Saad and M. Opper,
editors,Advanced Mean Field Methods - Theory and Practice. MIT Press, 2000.

[16] T. S. Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational methods.Statistics and
Computing, 10:25–37, 2000.

[17] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. InAdvances in Neural
Information Processing Systems 18. MIT Press, 2006.

[18] V. Tresp. Mixtures of Gaussian processes. InAdvances in Neural Information Processing Systems 13.
MIT Press, 2000.

[19] A. M. Schmidt and A. O’Hagan. Bayesian inference for nonstationary spatial covariance structure via
spatial deformations.Journal of Royal Statistical Society. Series B, 65:745–758, 2003.

[20] B. W. Silverman. Some aspects of the spline smoothing approach to non-parametric regression curve
fitting. Journal of Royal Statistical Society. Series B, 47:1–52, 1985.

[21] J. Peters and S. Schaal. Learning to control in operational space. International Journal of Robotics
Research, 27:197–212, 2008.

[22] M. I. Jordan and D. E. Rumelhart. Internal world models and supervised learning. InMachine Learning:
Proceedings of Eighth Internatinoal Workshop, pages 70–85. Morgan Kaufmann, 1991.

[23] Z. Ghahramani. Solving inverse problems using an EM approach todensity estimation. InProceedings
of the 1993 Connectionist Models summer school, pages 316–323. Erlbaum Associates, 1994.

