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Abstract

Bandpass filtering, orientation selectivity, and contrast gain control are prominent
features of sensory coding at the level of V1 simple cells. While the effect of
bandpass filtering and orientation selectivity can be assessed within a linear model,
contrast gain control is an inherently nonlinear computation. Here we employ the
class of Lp elliptically contoured distributions to investigate the extent to which
the two features—orientation selectivity and contrast gain control—are suited to
model the statistics of natural images. Within this framework we find that contrast
gain control can play a significant role for the removal of redundancies in natural
images. Orientation selectivity, in contrast, has only a very limited potential for
redundancy reduction.

1 Introduction

It is a long standing hypothesis that sensory systems are adapted to the statistics of their inputs.
These natural signals are by no means random, but exhibit plenty of regularities. Motivated by
information theoretic principles, Attneave and Barlow suggested that one important purpose of this
adaptation in sensory coding is to model and reduce the redundancies [4; 3] by transforming the
signal into a statistically independent representation.

The problem of redundancy reduction can be split into two parts: (i) finding a good statistical model
of the natural signals and (ii) a way to map them into a factorial representation. The first part
is relevant not only to the study of biological systems, but also to technical applications such as
compression and denoising. The second part offers a way to link neural response properties to
computational principles, since neural representations of natural signals must be advantageous in
terms of redundancy reduction if the hypothesis were true. Both aspects have been extensively
studied for natural images [2; 5; 8; 19; 20; 21; 24]. In particular, it has been shown that applying
Independent Component Analysis (ICA) to natural images consistently and robustly yields filters
that are localized, oriented and show bandpass characteristics [19; 5]. Since those features are also
ascribed to the receptive fields of neurons in the primary visual cortex (V1), it has been suggested
that the receptive fields of V1 neurons are shaped to form a minimally redundant representation of
natural images [5; 19].

From a redundancy reduction point of view, ICA offers a small but significant advantage over other
linear representations [6]. In terms of density estimation, however, it is a poor model for natural
images since already a simple non-factorial spherically symmetric model yields a much better fit to
the data [10].

Recently, Lyu and Simoncelli proposed a method that converts any spherically symmetric distribu-
tion into a (factorial) Gaussian (or Normal distribution) by using a non-linear transformation of the
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norm of the image patches [17]. This yields a non-linear redundancy reduction mechanism, which
exploits the superiority of the spherically symmetric model over ICA. Interestingly, the non-linearity
of this Radial Gaussianization method closely resembles another feature of the early visual system,
known as contrast gain control [13] or divisive normalization [20]. However, since spherically sym-
metric models are invariant under orthogonal transformations, they are agnostic to the particular
choice of basis in the whitened space. Thus, there is no role for the shape of the filters in this model.

Combining the observations from the two models of natural images, we can draw two conclusions:
On the one hand, ICA is not a good model for natural images, because a simple spherically sym-
metric model yields a much better fit [10]. On the other hand, the spherically symmetric model in
Radial Gaussianization cannot capture that ICA filters do yield a higher redundancy reduction than
other linear transformations. This leaves us with the questions whether we can understand the emer-
gence of oriented filters in a more general redundancy reduction framework, which also includes a
mechanism for contrast gain control.

In this work we address this question by using the more general class of Lp-spherically symmetric
models [23; 12; 15]. These models are quite similar to spherically symmetric models, but do depend
on the particular shape of the linear filters. Just like spherically symmetric models can be non-
linearly transformed into isotropic Gaussians, Lp-spherically symmetric models can be mapped into
a unique class of factorial distributions, called p-generalized Normal distributions [11]. Thus, we
are able to quantify the influence of orientation selective filters and contrast gain control on the
redundancy reduction of natural images in a joint model.

2 Models and Methods

2.1 Decorrelation and Filters

All probabilistic models in this paper are defined on whitened natural images. Let C be the co-
variance matrix of the pixel intensities for an ensemble x1, ...,xm of image patches, then C−

1
2

constitutes the symmetric whitening transform. Note that all vectors y = V C−
1
2 x, with V being

an orthogonal matrix, have unit covariance. V C−
1
2 yield the linear filters that are applied to the raw

image patches before feeding them in the probabilistic models described below. Since any decorre-
lation transform can be written as V C−

1
2 , the choice of V determines the shape of the linear filters.

In our experiments, we use three different kinds of V :

SYM The simplest choice is VSYM = I , i. e. y = C−
1
2 x contains the coefficients in the symmetric

whitening basis. From a biological perspective, this case is interesting as the filters resemble recep-
tive fields of retinal ganglion cells with center-surround properties.

ICA The filters VICA of ICA are determined by maximizing the non-Gaussanity of the marginal
distributions. For natural image patches, ICA is known to yield orientation selective filters in resem-
blance to V1 simple cells. While other orientation selective bases are possible, the filters defined
by VICA correspond to the optimal choice for redundancy reduction under the restriction to linear
models.

HAD The coefficients in the basis VHAD = 1√
m

HVICA, with H denoting an arbitrary Hadamard
matrix, correspond to a sum over the different ICA coefficients, each possibly having a flipped sign.
Hadamard matrices are defined by the two properties Hij = ±1 and HH> = mI . This case can
be seen as the opposite extreme to the case of ICA. Instead of running an independent search for the
most Gaussian marginals, the central limit theorem is used to produce the most Gaussian compo-
nents by using the Hadamard transformation to mix all ICA coefficients with equal weight resorting
to the independence assumption underlying ICA.

2.2 Lp-spherically Symmetric Distributions

The contour lines of spherically symmetric distributions have constant Euclidean norm. Simi-
larly, the contour lines of Lp-spherically symmetric distributions have constant p-norm1 ||y||p :=

1Note that ||y||p is only a norm in the strict sense if p ≥ 1. However, since the following considerations also
hold for 0 < p < 1, we will employ the term “p-norm” and the notation “||y||p” for notational convenience.
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p
√∑n

i=1 |yi|p The set of vectors with constant p-norm Sn−1
p (r) := {y ∈ Rn : ||y||p = r, p >

0, r > 0} is called p-sphere of radius r. Different examples of p-spheres are shown along the
coordinate axis of Figure 1. For p 6= 2 the distribution is not invariant under arbitrary orthogonal
transformations, which means that the choice of the basis V can make a difference in the likelihood
of the data.

Factorial Distributions Lp Spherically Symmetric 
Distributions

Normal Distribution

p

ICA

cICA

SYM

cSYM

HAD

cHAD

p-generalized Normal Distributions

p=2: Spherically 
Symmetric Distributions

Figure 1: The spherically symmetric distributions are a subset of the Lp-spherical symmetric distri-
butions. The right shapes indicate the iso-density lines for the different distributions. The Gaussian
is the only L2-spherically symmetric distribution with independent marginals. Like the Gaussian
distribution, all p-generalized Normal distributions have independent marginals. ICA, SYM, ... de-
note the models used in the experiments below.

A multivariate random variable Y is called Lp-spherically symmetric distributed if it can be written
as a product Y = RU , where U is uniformly distributed on Sn−1

p (1) and R is a univariate non-
negative random variable with an arbitrary distribution [23; 12]. Intuitively, R corresponds to the
radial component, i. e. the length ||y||p measured with the p-norm. U describes the directional com-
ponents in a polar-like coordinate system (see Extra Material). It can be shown that this definition
is equivalent to the density %(y) of Y having the form %(y) = f(||y||pp) [12]. This immediately
suggests two ways of constructing an Lp-spherically symmetric distribution. Most obviously, one
can specify a density %(y) that has the form %(y) = f(||y||pp). An example is the p-generalized
Normal distribution (gN) [11]

%(y) =
pn

Γn
(

1
p

)
(2σ2)

n
p 2n

exp
(
−
∑n
i=1 |yi|p

2σ2

)
= f(||y||pp). (1)

Analogous to the Gaussian being the only factorial spherically symmetric distribution [1], this dis-
tribution is the only Lp-spherically symmetric distribution with independent marginals [22]. For the
p-generalized Normal, the marginals are members of the exponential power family.

In our experiments, we will use the p-generalized Normal to model linear marginal independence by
fitting it to the coefficients of the various bases in whitened space. Since this distribution is sensitive
to the particular filter shapes for p 6= 2, we can assess how well the distribution of the linearly
transformed image patches is matched by a factorial model.

An alternative way of constructing an Lp-spherically symmetric distribution is to specify the radial
distribution %r. One example, which will be used later, is obtained by choosing a mixture of Log-
Normal distributions (RMixLogN). In Cartesian coordinates, this yields the density

%(y) =
pn−1Γ

(
n
p

)
2nΓn

(
1
p

) K∑
k=1

ηk

||y||npσk
√

2π
exp

(
− (log ||y||p − µk)2

2σ2
k

)
. (2)
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An immediate consequence of any Lp-spherically symmetric distribution being specified by its ra-
dial density is the possibility to change between any two of those distributions by transforming the
radial component with (F−1

2 ◦ F1)(||y||p), where F1 and F2 are cumulative distribution functions
(cdf) of the source and the target density, respectively. In particular, for a fixed p, any Lp-spherically
symmetric distribution can be transformed into a factorial one by the transform

z = g(y) · y =
(F−1

2 ◦ F1)(||y||p)
||y||p

y.

This transform closely resembles contrast gain control models for primary visual cortex [13; 20],
which use a different gain function having the form g̃(y) = 1

c+r with r = ||y||22 [17].

We will use the distribution of equation (2) to describe the joint model consisting of a linear filtering
step followed by a contrast gain control mechanism. Once, the linear filter responses in whitened
space are fitted with this distribution, we non-linearly transform it into a the factorial p-generalized
Normal by the transformation g(y) · y = (F−1

gN ◦ FRMixLogN)(||y||p)/||y||p · y.

Finally, note that because a Lp-spherically symmetric distribution is specified by its univariate radial
distribution, fitting it to data boils down to estimating the univariate density forR, which can be done
efficiently and robustly.

3 Experiments and Results

3.1 Dataset

We use the dataset from the Bristol Hyperspectral Images Database [7], which was already used in
previous studies [25; 16]. All images had a resolution of 256×256 pixels and were converted to gray
level by averaging over the channels. From each image circa 5000 patches of size 15×15 pixels were
drawn at random locations for training (circa 40000 patches in total) as well as circa 6250 patches
per image for testing (circa 50000 patches in total). In total, we sampled ten pairs of training and
test sets in that way. All results below are averaged over those. Before computing the linear filters,
the DC component was projected out with an orthogonal transformation using a QR decomposition.
Afterwards, the data was rescaled in order to make whitening a volume conserving transformation
(a transformation with determinant one) since those transformations leave the entropy unchanged.

3.2 Evaluation Measure

In all our experiments, we used the Average Log Loss (ALL) to assess the quality of the fit and
the redundancy reduction achieved. The ALL = 1

nE%[− log2 %̂(y)] ≈ 1
mn

∑m
k=1− log2 %̂(y) is

the negative mean log-likelihood of the model distribution under the true distribution. If the model
distribution matches the true one, the ALL equals the entropy. Otherwise, the difference between
the ALL and the entropy of the true distribution is exactly the Kullback-Leiber divergence between
the two. The difference between the ALLs of two models equals the reduction in multi-information
(see Extra Material) and can therefore be used to quantify the amount of redundancy reduction.

3.3 Experiments

We fitted the Lp-spherically symmetric distributions from equations (1) and (2) to the image patches
in the bases HAD, SYM, and ICA by a maximum likelihood fit on the radial component. For the
mixture of Log-Normal distributions, we used EM for a mixture of Gaussians on the logarithm of
the p-norm of the image patches.

For each model, we computed the maximum likelihood estimate of the model parameters and deter-
mined the best value for p according to the ALL in bits per component on a training set. The final
ALL was computed on a separate test set.

For ICA, we performed a gradient descent over the orthogonal group on the log-likelihood of a
product of independent exponential power distributions, where we used the result of the FastICA
algorithm by Hyvärinen et al. as initial starting point [14]. All transforms were computed separately
for each training set.
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Figure 2: ALL in bits per component as a function of p. The linewidth corresponds to the standard
deviation over ten pairs of training and test sets. Left: ALL for the bases HAD, SYM and ICA under
the p-generalized Normal (HAD, SYM, ICA) and the factorial Lp-spherically symmetric model with
the radial component modeled by a mixture of Log-Normal distributions (cHAD, cSYM, cICA).
Right: Bar plot for the different ALL indicated by horizontal lines in the left plot.

In order to compare the redundancy reduction of the different transforms with respect to the pixel
basis (PIX), we computed a non-parametric estimate of the marginal entropies of the patches before
the DC component was projected out [6]. Since the estimation is not bound to a particular parametric
model, we used the mean of the marginal entropies as an estimate of the average log-loss in the pixel
representation.

3.4 Results

Figure 2 and Table 1 show the ALL for the bases HAD, SYM, and ICA as a function of p. The
upper curve bundle represents the factorial p-generalized Normal model, the lower bundle the non-
factorial model with the radial component modeled by a mixture of Log-Normal distributions with
five mixtures. The ALL for the factorial models always exceeds the ALL for the non-factorial
models. At p = 2, all curves intersect, because all models are invariant under a change of basis for
that value. Note that the smaller ALL of the non-factorial model cannot be attributed to the mixture
of Log-Normal distributions having more degrees of freedom. As mentioned in the introduction, the
p-generalized Normal is the only factorial Lp-spherically symmetric distribution [22]. Therefore,
marginal independence is such a rigid assumption that the output scale is the only degree of freedom
left.

From the left plot in Figure 2, we can assess the influence of the different filter shapes and contrast
gain control on the redundancy reduction of natural images. We used the best ALL of the HAD
basis under the p-generalized Normal as a baseline for a whitening transformation without contrast
gain control (HAD). Analogously, we used the best ALL of the HAD basis under the non-factorial
model as a baseline for a pure contrast gain control model (cHAD). We compared these values
to the best ALL obtained by using the SYM and the ICA basis under both models. Because the
filters of SYM and ICA resemble receptive field properties of retinal ganglion cells and V1 simple
cells, respectively, we can assess their possible influence on the redundancy reduction with and
without contrast gain control. The factorial model corresponds to the case without contrast gain
control (SYM and ICA). Since we have shown that the non-factorial model can be transformed into
a factorial one by a p-norm based divisive normalization operation, these scores correspond to the
cases with contrast gain control (cSYM and cICA). The different cases are depicted by the horizontal
lines in Figure 2.

As already reported in other works, plain orientation selectivity adds only very little to the redun-
dancy reduction achieved by decorrelation and is less effective than the baseline contrast gain con-
trol model [10; 6; 17]. If both orientation selectivity and contrast gain control are combined (cICA)
it is possible to achieve about 9% extra redundancy reduction in addition to baseline whitening
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Absolute Difference [Bits/Comp.] Relative Difference [% wrt. cICA]
HAD - PIX −3.2947± 0.0018 91.0016± 0.0832

SYM- PIX −3.3638± 0.0022 92.9087± 0.0782

ICA - PIX −3.4110± 0.0024 94.2135± 0.0747

cHAD - PIX −3.5692± 0.0045 98.5839± 0.0134

cSYM - PIX −3.5945± 0.0047 99.2815± 0.0098

cICA - PIX −3.6205± 0.0049 100.0000± 0.0000

Table 1: Difference in ALL for gray value images with standard deviation over ten training and test
set pairs. The column on the left displays the absolute difference to the PIX representation. The
column on the right shows the relative difference with respect to the largest reduction achieved by
ICA with non-factorial model.
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Figure 3: The curve in the up-
per right corner depicts the trans-
formation ||z||p = (F−1

gN ◦
FRMixLogN)(||y||p) of the radial
component in the ICA basis for
gray scale images. The result-
ing radial distribution over ||z||p
corresponds to the radial distribu-
tion of the p-generalized Normal.
The inset shows the gain function
g(||y||p) = FRMixLogN(||y||p)

||y||p in log-
log coordinates. The scale parame-
ter of the p-generalized normal was
chosen such that the marginal had
unit variance.

(HAD). By setting the other models in relation to the best joint model (cICA:= 100%), we are able
to tell apart the relative contributions of bandpass filtering (HAD= 91%), particular filter shapes
(SYM= 93%, ICA= 94%), contrast gain control (cHAD= 98.6%) as well as combined models
(cSYM= 99%, cICA := 100%) to redundancy reduction (see Table 1). Thus, orientation selectivity
(ICA) contributes less to the overall redundancy reduction than any model with contrast gain control
(cHAD, cSYM, cICA). Additionally, the relative difference between the joint model (cICA) and
plain contrast gain control (cHAD) is only about 1.4%. For cSYM it is even less, about 0.7%. The
difference in redundancy reduction between center-surround filters and orientation selective filters
becomes even smaller in combination with contrast gain control (1.3% for ICA vs. SYM, 0.7% for
cICA vs. cSYM). However, it is still significant (t-test, p = 5.5217 · 10−9).

When examining the gain functions g(||y||p) =
(F−1

gN ◦FRMixLogN)(||y||p)
||y||p resulting from the transforma-

tion of the radial components, we find that they approximately exhibit the form g(||y||p) = c
||y||κp

.
The inset in Figure 3 shows the gain control function g(||y||p) in a log-log plot. While standard con-
trast gain control models assume p = 2 and κ = 2, we find that κ between 0.90 and 0.93 to be opti-
mal for redundancy reduction. p depends on the shape of the linear filters and ranges from approx-
imately 1.2 to 2. In addition, existing contrast gain models assume the form g(||y||2) = 1

σ+||y||22
,

while we find that σ must be approximately zero.

In the results above, the ICA filters always achieve the lowest ALL under both p-spherically sym-
metric models. For examining whether these filters really represent the best choice, we also opti-
mized the filter shapes under the model of equation (2) via maximum likelihood estimation on the
orthogonal group in whitened space [9; 18]. Figure 4 shows the filter shapes for ICA and the ones
obtained from the optimization, where we used either the ICA solution or a random orthogonal ma-
trix as starting point. Qualitatively, the filters look exactly the same. The ALL also changed just
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Figure 4: Filters optimized for ICA (left) and for the p-spherically symmetric model with radial
mixture of Log-Normal distributions starting from the ICA solution (middle) and from a random
basis (right). The first filter corresponds to the DC component, the others to the filter shapes under
the respective model. Qualitatively the filter shapes are very similar. The ALL for the ICA basis
under the mixture of Log-Normal model is 1.6748±0.0058 bits/component (left), the ALL with the
optimized filters is 1.6716± 0.0056 (middle) and 1.6841± 0.0068 (right).

marginally from 1.6748 ± 0.0058 to 1.6716 ± 0.0056 or 1.6841 ± 0.0068, respectively. Thus, the
ICA filters are a stable and optimal solution under the model with contrast gain control, too.

4 Summary

In this report, we studied the conjoint effect of contrast gain control and orientation selectivity on
redundancy reduction for natural images. In particular, we showed how the Lp-spherically distribu-
tion can be used to tune a nonlinearity of contrast gain control to remove higher-order redundancies
in natural images.

The idea of using an Lp-spherically symmetric model for natural images has already been brought
up by Hyvärinen and Köster in the context of Independent Subspace Analysis [15]. However, they
do not use the Lp-distribution for contrast gain control, but apply a global contrast gain control filter
on the images before fitting their model. They also use a less flexible Lp-distribution since their goal
is to fit an ISA model to natural images and not to carry out a quantitative comparison as we did.

In our work, we find that the gain control function turns out to follow a power law, which parallels
the classical model of contrast gain control. In addition, we find that edge filters also emerge in the
non-linear model which includes contrast gain control. The relevance of orientation selectivity for
redundancy reduction, however, is further reduced. In the linear framework (possibly endowed with
a point-wise nonlinearity for each neuron) the contribution of orientation selectivity to redundancy
reduction has been shown to be smaller than 5% relative to whitening (i. e. bandpass filtering)
alone [6; 10]. Here, we found that the contribution of orientation selectivity is even smaller than two
percent relative to whitening plus gain control. Thus, this quantitative model comparison provides
further evidence that orientation selectivity is not critical for redundancy reduction, while contrast
gain control may play a more important role.
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