
COFIRANK

Maximum Margin Matrix Factorization for
Collaborative Ranking

Appendix

Markus Weimer∗ Alexandros Karatzoglou† Quoc Viet Le‡ Alex Smola§

1 Ranking Losses

The main body of the paper describes the procedures to compute the function value l(f, y) and its
gradient ∂f l(f, y) (the ’bundle’) for the NDCG loss. This is the information needed by the bundle
methods to minimize the empirical risk.

We can actually use Algorithm ?? in combination with any loss. This section will describe how to
compute the loss value and its gradient efficiently for many ranking losses.

1.1 Regression

For least mean squared regression, the loss and the gradient are defined as

l(f, y) =
1
2
(f − y)2 (1)

∂f l(y, f) = (y − f) (2)

1.2 Ordinal Regression

For ordinal regression, we would like fi − fj < 0 whenever yi < yj . Whenever this relationship is
not satisfied, we incur a cost C(i, j) for preferring item i to item j.

Denote by mi the number of items j for which yj = i. In this case, there are m2 −
∑n

i=1m
2
i pairs

yi, yj for which yi 6= yj . Normalizing by the total number of comparisons we may write the overall
cost of the estimator as

1
M

∑
yi<yj

C(yi, yj) {fi > fj} where M =
1
2

[
m2 −

∑
i

m2
i

]
. (3)

The loss can be defined as

l(f, y) =
1
M

∑
yi<yj

C(yi, yj) max(0, 1 + fi − fj) (4)

Now the goal is to find an efficient algorithm for obtaining the number of times when the individual
losses are nonzero such as to compute both the value and the gradient of l(f, y). The complication
arises from the fact that observations xi with label yi may appear in either side of the inequality
∗Telecooperation Group, TU Darmstadt, Germany, mweimer@tk.informatik.tu-darmstadt.de
†Department of Statistics, TU Wien, alexis@ci.tuwien.ac.at
‡Computer Science Department, Stanford University, Stanford, CA 94305, quoc.le@stanford.edu
§SML, NICTA, Northbourne Av. 218, Canberra 2601, ACT, Australia, alex.smola@nicta.com.au

1

depending on whether yj < yi or yj > yi. This problem can be solved as follows: sort f in
ascending order and traverse it while keeping track of how many items with a lower value yj are
no more than 1 apart in terms of their value of fi. This way we may compute the count statistics
efficiently. Algorithm 1 describes the details, generalizing the results of [?]. Again, its runtime is
O(m logm), thus allowing for efficient computation.

Algorithm 1 (l, g) = Ordinal(f, y, C)
input Vectors f and y score matrix C
output Loss l := l(f, y) and gradient g := ∂f l(f, y)
for i = 1 to n do
hi = 0 and ui = mi

end for
set c = [f − 1

2 , f + 1
2] ∈ R2m (concatenate the vectors)

compute M = 0.5(m2 − ‖u‖22)
rescale C ← C/M
index = QuickSort(c)
initialize l = 0 and g = ~0
for i = 1 to 2m do
j = index(i) mod m and z = yj

if index(i) ≤ m then
for k = 1 to z − 1 do
l← l − C(k, z)ukcj
gj ← gj − C(k, z)uk

end for
hz ← hz + 1

else
for k = z + 1 to n do
l← l + C(z, k)hkcj+m

gj ← gj + C(z, k)hk

end for
uz ← uz − 1

end if
end for

1.3 Preference Relations

In general, our loss may be described by means of a set of preference relations j � i for arbitrary
pairs (i, j) ∈ {1, . . .m}2 associated with a cost C(i, j) which is incurred whenever i is ranked
above j. This set of preferences may or may not form a partial or a total order on the domain
of all observations. In these cases efficient computations along the lines of Algorithm 1 exist. In
general, this is not the case and we need to rely on the fact that the set P containing all preferences
is sufficiently small that it can be enumerated efficiently. The loss is then given by

1
|P |

∑
(i,j)∈P

C(i, j) {fi > fj} (5)

Again, the same majorization argument as before allows us to write a convex upper bound

l(f, y) =
1
|P |

∑
(i,j)∈P

C(i, j) max [0, 1 + fi − fj] (6)

where ∂f l(f, y) =
1
|P |

∑
(i,j)∈P

C(i, j)
{

0 if fj − fi ≥ 1
fi − fj otherwise

(7)

The implementation is straightforward, as given in Algorithm 2.

2

Algorithm 2 (l, g) = Preference(f, P, C)
input Vectors f , preference set P , score matrix C
output Loss l := l(f, y) and gradient g := ∂f (f, y)

initialize l = 0 and g = ~0
while (i, j) ∈ P do

if fj − fi < 1 then
l← l + C(i, j)(1 + fi − fj)
gi ← gi + C(i, j) and gj ← gj − C(i, j)

end if
end while

1.4 Expected Rank Utility

Similar to the NDCG ranking measure, Expected Rank Utility is a permutation-dependent and
position-dependent ranking measure.

Definition 1 (Expected Rank Utility) Under the assumptions on y and π as in Definition ?? the
Expected Rank Utility (ERU) and its normalized variant (NERU) are defined as [?]

ERU(π, y) =
k∑

i=1

2
1−πi
α−1 max(yi − d, 0) and NERU(π, y) =

ERU(π, y)
ERU(argsort(y), y)

. (8)

Here d is a “neutral” vote and α is the viewing halflife. This means that the top positions have an
exponentially higher weight than positions lower on the list. In other words, d is a cutoff beyond
which we stop caring about the particular object.

Due to the similarities between NDCG and NERU, the optimization procedure described for NDCG
can be applied directly for NERU. However, we have to use a new setting for vectors a and b

ai := 2
1−i
α−1 and bi := max(yi − d, 0) (9)

3

