
Privacy-Preserving Belief Propagation and Sampling

Michael Kearns, Jinsong Tan, and Jennifer Wortman
Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104

Abstract

We provide provably privacy-preserving versions of belief propagation, Gibbs
sampling, and other local algorithms — distributed multiparty protocols in which
each party or vertex learns only its final local value, and absolutely nothing else.

1 Introduction

In this paper we provide provably privacy-preserving versions of belief propagation, Gibbs sam-
pling, and other local message-passing algorithms on large distributed networks. Consider a network
of human social contacts, and imagine that each party would like to compute or estimate their prob-
ability of having contracted a contagious disease, which depends on the exposures to the disease of
their immediate neighbors in the network. If network participants (or their proxy algorithms) engage
in standard belief propagation, each party would learn their probability of exposure conditioned on
any evidence — and a great deal more, including information about the exposure probabilities of
their neighbors. Obviously such leakage of non-local information is highly undesirable in settings
where we regard each party in the network as a self-interested agent, and privacy is paramount. Other
examples include inference problems in distributed military sensor networks (where we would like
the “capture” of one sensor to reveal as little non-local state information as possible), settings where
networks of financial organizations would like to share limited information, and so on.

By a privacy-preserving version of inference (for example), we informally mean a protocol in which
each party learns their conditional probability of exposure to the disease and absolutely nothing else.
More precisely, anything a party can efficiently compute after having participated in the protocol,
they could have efficiently computed alone given only the value of their conditional probability —
thus, the protocol leaked no additional information beyond its desired outputs. Classical and power-
ful tools from cryptography [6] provide solutions to this problem, but with the significant drawback
of entirely centralizing the privacy-preserving computation. Put another way, the straightforward
solution from cryptography requires every party in the network to have the ability to broadcast to
all others, and the resulting algorithm may bear little resemblance to standard belief propagation.
Clearly this is infeasible in settings where the network is very large and entirely distributed, where
individuals may not even know the size of the overall network, much less its structure and the
identity of its constituents. While there has been work on minimizing the number of messages ex-
changed in centralized privacy-preserving protocols [9], ours are the first results that preserve the
local communication structure of distributed algorithms like belief propagation.

Our protocols are faithful to the network topology, requiring only the passing of messages between
parties separated by one or two hops in the network. Furthermore, our protocols largely preserve
the algebraic structure of the original algorithms (for instance, the sum-product structure of belief
propagation) and enjoy all the correctness guarantees of the originals (such as exact inference in
trees for belief prop or convergence of Gibbs sampling to the joint distribution). Our technical
methods show how to blend tools from cryptography (secure multiparty computation and blindable
encryption) with local message-passing algorithms in a way that preserves the original computations,
but in which all messages appear to be randomly distributed from the viewpoint of any individual.

1

All results in this paper apply to the “semi-honest” or “honest but curious” model in the cryptography
literature, in which participants obediently execute the protocol but may attempt to infer non-private
information from it. We expect that via the use of zero-knowledge proof techniques, our protocols
may be strengthened to models in which participants who deviate from the protocol are detected.

2 Background and Tools from Cryptography

2.1 Secure Multiparty Function Computation

Let f(x1, . . . , xk) be any function on k inputs. Imagine a scenario in which there are k distinct
parties, each in possession of exactly one of these inputs (that is, party i initially knows xi) and the
k parties would like to jointly compute the value of f(x1, . . . , xk). Perhaps the simplest protocol
would have all parties share their private inputs and then individually compute the value of f . How-
ever, in many natural settings, we would like the parties to be able to perform this joint computation
in a privacy-preserving fashion, with each party revealing as little as possible about their private
input. Simple examples include voting — we would all like to learn the results of the election with-
out having to broadcast our private votes — and the so-called “Millionaire’s Problem” in which two
individuals would like to learn who is wealthier, without revealing their precise wealth to each other.
If a trusted “third party” is available, one solution would be to provide the private inputs to them,
and have them perform the computation in secrecy, only announcing the final result. The purpose
of the theory of secure multiparty function computation [6] is to show that under extremely general
circumstances, a third party is surprisingly unnecessary.

Note that it is typically inevitable that some information is revealed just by the result of the compu-
tation of f itself. For example, in the Millionaire’s Problem, there is no avoiding the poorer party
learning a lower bound on the richer’s wealth (namely, the poorer party’s wealth). The goal is thus
to reveal nothing beyond what it implied by the value of f .

To formalize this notion in a complexity-theoretic framework, let us assume without loss of gener-
ality that each input xi is n bits in length. We make the natural and common assumptions that the
function f can be computed in time polynomial in kn, and that each party’s computational resources
are bounded by a polynomial in n. We (informally) define a protocol Π for the k parties to compute
f to be a specific mechanism by which the parties exchange messages and perform computations,
ending with every party learning the value y = f(x1, . . . , xk). One (uninteresting) protocol is the
one in which each party sends their private inputs to all others, and every party computes y alone.

Definition 1 1 Let Π be any protocol for the k parties to jointly compute the value y =
f(x1, . . . , xk) from their n-bit private inputs. We say that Π is privacy-preserving if for every
1 ≤ i ≤ k, anything that party i can compute in time polynomial in n following the execution
of Π, they could also compute in polynomial time given only their private input xi and the value y.

In other words, whatever information party i is able to obtain from their view of the execution of
protocol Π, it does not let them efficiently compute anything they couldn’t efficiently compute just
from being told the final output y of Π (and their private input xi). This captures the notion that
while y itself may “leak” some information about the other private inputs xj , the protocol Π yields
nothing further.2 Further, for the following theorem we can consider more general vector outputs
and randomized functionalities, which we need for our technical results.

Theorem 1 (See e.g. [6]) Let f(x1, . . . , xk) = (y1, . . . , yk) be any (possibly randomized) k-input,
k-output functionality that can be computed in polynomial time. Then under standard cryptographic
assumptions, 3 there exists a polynomial time privacy-preserving protocol Π for f (that is, a protocol
in which party i learns nothing not already implied by their private input xi and private output yi).

1We state this definition informally, as the complete technical definition is somewhat lengthy and adds little
intuition. It involves both formalizing the notion of a multiparty computation protocol, as well as defining the
“view” of an individual party of a specific execution of the protocol. The definition involves computational
indistinguishability of probability distributions since the protocols may often use randomization.

2Our definition of privacy does not imply that coalitions of parties cannot together compute additional
information. In the extended version of this paper, we discuss the difficulty of achieving this stronger notion of
privacy with any protocol that uses a truly distributed method of computation.

3An example would be the existence of trapdoor permutations [6].

2

This remarkable and important theorem essentially says that whatever a population can jointly com-
pute, it can jointly compute with arbitrary restrictions on who learns what. A powerful use of vector
outputs is to enforce knowledge asymmetries on the parties. For instance, in the Millionaire’s Prob-
lem, by defining one player’s output to always be nil, we can ensure that this player learns absolutely
nothing from the protocol, while the other learns which player is wealthier.

The proof of Theorem 1 is constructive, providing an algorithm to transform any polynomial cir-
cuit into a polynomial-time privacy-preserving protocol for k parties. As discussed in the intro-
duction, this theorem can be immediately applied to (say) belief propagation to yield centralized
privacy-preserving protocols for inference; our contribution is preserving the highly distributed, lo-
cal message-passing structure of belief propagation and similar algorithms.

2.2 Public-Key Encryption with Blinding

The second cryptographic primitive that we shall require is standard public-key encryption with an
additional property known as blinding. A standard public-key cryptosystem allows any party to
generate a pair of keys (P, S), which we can think of as k-bit strings; k is often called the security
parameter. Associated with the public key P there is a (possibly probabilistic) encryption function
EP and associated with the secret or private key S there is a (deterministic) decryption functionDS .
Informally, the system should have the following security properties:

• For any n-bit x, the value of the function EP (x) can be computed in polynomial time from
inputs x and P . Similarly, DS(y) can be computed efficiently given y and S.

• For any n-bit input x, DS(EP (x)) = x. Thus, decryption is the inverse of encryption.

• For any n-bit x, it is hard for a party knowing only the public key P and the encryption
EP (x) to compute x. 4

Thus, in such a scheme, anyone knowing the public key of Alice can efficiently compute and send
encrypted messages to Alice, but only Alice, who is the sole party knowing her private key, can
decrypt those messages. Such cryptosystems are widely believed to exist and numerous concrete
proposals have been examined for decades. As one specific example that allows probabilistic en-
cryption of individual bits, let the public key consist of an integer N = p · q that is the product of
two k/2-bit randomly generated prime numbers p and q, as well as a number z that has the property
that z is not equal to x2 mod N for any x. It is easy to generate such (N, z) pairs. In order to
encrypt a 0, one simply chooses x at random and lets the encryption be y = x2 mod N , known
as a quadratic residue. In order to encrypt a 1, one instead sends y = x2 · z mod N , which is
guaranteed to not be a quadratic residue. It is not difficult to show that given the factors p and q
(which constitute the secret key), one can efficiently compute whether y is a quadratic residue and
thus learn the decrypted bit. Furthermore, it is widely believed that decryption is actually equivalent
to factoring N , and thus intractable without the secret key.

This simple public-key cryptosystem also has the additional blinding property that we will require.
Given only the public key (N, z) and an encrypted bit y as above, it is the case that for any value w,
w2y mod N is a quadratic residue if and only if y is a quadratic residue, and that furthermore w2y
mod N is uniformly distributed among all (non-)quadratic residues if y is a (non-)quadratic residue.
Thus, a party knowing only Alice’s public key can nevertheless take any bit encrypted for Alice and
generate random re-encryptions of that bit without needing to actually know the decryption. We
refer to this operation as blinding an encrypted bit.

3 Privacy-Preserving Belief Propagation

In this section we briefly review the standard algorithm for belief propagation on trees [10] and
outline how to run this algorithm in a privacy-preserving manner such that each variable learns only
its final marginals and no additional new information that is not implied by these marginals.

In standard belief propagation, we are given an undirected graphical model with vertex set X for
which the underlying network is a tree. We denote by V(Xi) the set of possible values of Xi ∈ X ,

4This is often formalized by asserting that the distribution of the encryption is computationally indistin-
guishable from true randomness in time polynomial in n and k.

3

and by N (Xi) the set of Xi’s neighbors. For each Xi ∈ X , we are given a non-negative potential
function ψi over possible values xi ∈ V(Xi). Similarly, for each pair of adjacent vertices Xi and
Xj , we are given a non-negative potential function ψi,j over joint assignments to Xi and Xj .

The main inductive phase of the belief propagation algorithm is the message-passing phase. At each
step, a node Xi computes a message µi→j to send to some Xj ∈ N (Xi). This message is indexed
by all possible assignments xj ∈ V(Xj), and is defined inductively by

µi→j(xj) =
∑

xi∈V(Xi)

ψi(xi)ψi,j(xi, xj)
∏

Xk∈N (Xi)\Xj

µk→i(xi). (1)

Belief propagation follows the so-called message-passing protocol, in which any vertex of degree d
that has received the incoming messages from any d−1 of its neighbors can perform the computation
above in order to send an outgoing message to its remaining neighbor. Eventually, the vertex will
receive a message back from this last neighbor, at which point it will be able to calculate messages
to send to its remaining d − 1 neighbors. The protocol begins at the leaves of the tree, and it
follows from standard arguments that until all nodes have received incoming messages from all of
their neighbors, there must be some vertex that is ready to compute and send a new message. The
message-passing phase ends when all vertices have received messages from all of their neighbors.

Once vertexXi has received all of its incoming messages, the marginal distribution P is proportional
to their product. That is, if xi is any setting to Xi, then

P[Xi = xi] ∝ ψi(xi)
∏

Xj∈N (Xi)

µj→i(xi). (2)

When there is evidence in the network, represented as a partial assignment ~e to some subset E of the
variables, we can simply hard-wire this evidence into the potential functions ψj for eachXj ∈ E. In
this case it is well-known that the algorithm computes the conditional marginals P[Xi = xi|E = ~e].
For a more in-depth review of belief propagation, see Yedidia et al. [13] or Chapter 8 of Bishop [1].

3.1 Mask Propagation and the Privacy-Preserving Protocol

We assume that at the beginning of the privacy-preserving protocol, each node Xi knows its own
individual potential function ψi, as well as the joint potential functions ψi,j for all Xj ∈ N (Xi).
Recall that our fundamental privacy goal is to allow each vertex Xi to compute its own marginal
distribution P[Xi = xi] (or P[Xi = xi|E = ~e] if there is evidence), but absolutely nothing else.
In particular, Xi should not be able to compute the values of any of the incoming messages from its
neighbors. Knowledge of µj→i(xi), for example, along with µi→j and ψi,j , may give Xi informa-
tion about the marginals overXj , a clear privacy violation. We thus must somehow preventXi from
being able to “read” any of its incoming messages — nor even its own outgoing messages — yet
still allow each variable to learn its own set of marginals at the end. To accomplish this we combine
tools from secure multiparty function computation with a method we call “mask propagation”, in
which messages remain “masked” (that is, provably unreadable) to the vertices at all times. The
keys required to unmask the messages are generated locally as the computation propagates through
the tree, thus preserving the original communication pattern of the standard (non-private) algorithm.

Before diving into the secure protocol, we first must fix conventions regarding the encoding of
numerical values. We will assume throughout that all potential function values, all message values
and all the required products computed by the algorithm can be represented as n-bit natural numbers
and thus fall in ZN = {0, . . . , N − 1} where N = 2n. As expressed by Equation (2), marginal
probabilities are obtained by taking products of such n-bit numbers and then normalizing to obtain
finite-precision real-valued numbers in the range [0, 1]. It will be convenient to think of values in ZN

as elements of the cyclic group of order N with addition and subtraction modulo N . In particular,
we will make frequent use of the following simple fact: for any fixed x ∈ ZN , if r ∈ ZN is chosen
randomly among all n-bit numbers, then x+r mod N is also distributed randomly among all n-bit
numbers. We can think of the random value r as “masking” or hiding the value of x to a party that
does not know r, while leaving it readable to a party that does.

Let us now return to the message-passing phase of the algorithm described by Equation (1), and let
us focus on the computation of µi→j for a fixed setting xj of Xj . For the secure version of the
algorithm, we make the following inductive message and knowledge assumptions:

4

• For eachX` ∈ N (Xi)\Xj , and for each setting xi ofXi,Xi has already obtained a masked
version of µ`→i(xi):

µ`→i(xi) + βj,`(xi) mod N (3)
where βj,`(xi) is uniformly distributed in ZN .

• Xi knows only the sum in Equation (3) (which again is uniformly distributed in ZN and
thus meaningless by itself), and does not know the masking values βj,`(xi).

• Vertex Xj knows only the masking values βj,`(xi), and not the sum in Equation (3).

For all leaf nodes, these assumptions hold trivially at the start of the protocol, providing the base
case for the induction. Now under these informational assumptions, vertex Xi knows the set Ii =
{µ`→i(xi) + βj,`(xi) mod N : X` ∈ N (Xi)\Xj , xi ∈ V(Xi)} while vertex Xj knows the set
Ij = {βj,`(xi) mod N : X` ∈ N (Xi)\Xj , xi ∈ V(Xi)}.

Let us first consider the case in which Xj is not a leaf node and thus has neighbors other than Xi

itself. In order to complete the inductive step, it will be necessary for each Xk ∈ N (Xj)\Xi to
provide a set of masking values βk,i(xj) so that Xj can obtain a set of masked messages of the form
µi→j(xj) + βk,i(xj). Here we focus on a single neighbor Xk of Xj .

Vertex Xk privately generates a masking value βk,i(xj) that is uniformly distributed in
Zn. It is clear that, ignoring privacy concerns, Xi and Xj together could compute
ψi(xi)ψi,j(xi, xj)

∏

X`∈N (Xi)\Xj
µ`→i(xi) for each fixed pair xi and xj . Thus from their joint

inputs Ii, Ij , and βk,i(xj), ignoring privacy, Xi, Xj , and Xk could compute:

∑

xi∈V(Xi)

ψi(xi)ψi,j(xi, xj)
∏

X`∈N (Xi)\Xj

µ`→i(xi)

 + βk,i(xj) mod N

= µi→j(xj) + βk,i(xj) mod N (4)

Since this expression can be computed jointly by Xi, Xj and Xk without privacy considerations,
Theorem 1 establishes that we can construct an efficient protocol for them to compute it securely,
allowing Xj to learn only the value of the expression in Equation (4), while Xi and Xk learn no new
information at all (i.e. nil output). Note that this expression, due to the presence of the unknown
masking value βk,i(xj), is a uniform randomly distributed number in Zn from Xj’s point of view.

After this masking process has been completed for all Xk ∈ N (Xj)\Xi, we will have begun to
satisfy the inductive informational assumptions a step further in the propagation: for each neighbor
Xk of Xj excluding Xi, Xj will know a masked version of µi→j(xj) in which the masking value
βk,i(xj) is known only to Xk. Xj will obtain masked messages in a similar manner from all but one
of its other neighbors in turn, and for all of its other values, until the inductive assumptions are fully
satisfied at Xj . Every value received by Xi, Xj , and Xk during the above protocol is distributed
uniformly at random in Zn from the perspective of its recipient, and thus conveys no information.

It remains to consider the case in which Xj is a leaf node. In this case, there is no need to satisfy
the inductive assumptions at the next level, as the propagation ends at the leaves. Furthermore, it is
acceptable for Xj to learn its incoming messages directly, since these messages will be implied by
its final marginal. From their joint input Ii and Ij , it is clear that Xi and Xj together could compute
µi→j(xj) as given in Equation (1). Thus by Theorem 1, we can construct a protocol for them to
efficiently compute this value in such a way that Xj learns only µi→j(xj) and Xi learns nothing.

At the end of the message-passing phase, each internal (non-leaf) nodeXi will know a set of masked
messages from each of its neighbors. In particular, for each pair Xj , X` ∈ N (Xi), for each xi ∈
V(Xi), Xi will know the values of µj→i(xi) + β`,j(xi). Ignoring privacy concerns, it is the case
that Xi and any pair of its neighbors could compute the marginal of Xi in Equation (2). Invoking
Theorem 1 again, we can construct an efficient protocol for Xi and this pair of neighbors to together
compute the marginals such that Xi learns only the marginals and the neighbors learn nothing.

Each leaf vertex Xi will be in possession of its unmasked messages µj→i(xi) for every xi ∈ V(Xi)
from its neighbor Xj , and can easily compute its marginals as given in Equation (2) without having
learned anything not already implied by its initial potential functions and the marginals themselves.

We use PrivateBeliefProp(T) to denote the algorithm above when applied to a particular tree T .
The full proof of the following is omitted, but follows the logic sketched in the preceding sections.

5

Theorem 2 Under standard cryptographic assumptions, PrivateBeliefProp(T) allows every vari-
able Xi to compute its own marginal distribution P[Xi] and nothing else (that is, nothing not al-
ready computable in polynomial time from only P[Xi] and the initial potential functions). Direct
communication occurs only between variables who are immediate neighbors or two steps away in
T , and secure function computation is never invoked on sets of more than three variables. 5

We briefly note a number of extensions to Theorem 2 and the methods described above.

Loopy Belief Propagation: Theorem 2 can be extended to privacy-preserving loopy belief propa-
gation on graphs that contain cycles. Because of the protocol’s faithfulness to the original algorithm,
the same convergence and correctness claims hold as in standard loopy belief propagation [7].

Computing Only Partial Information: Allowing a variable to learn its exact numerical marginal
distribution may actually convey a great deal of information. We might instead only want each
variable to learn, for instance, whether its probability of taking on a given value is greater than
0.1 or not. Theorem 2 can easily be generalized to allow each variable to learn only any partial
information about its own marginal.

Privacy-Preserving Junction Tree: The protocol can also be modified to perform privacy-
preserving belief propagation on a junction tree [11]. Here it is necessary to take intra-clique privacy
into account in order to enforce that variables can learn only their own marginals and not, for exam-
ple, the marginals of other nodes within the same clique.

NashProp and Other Message-Passing Algorithms: The methods described here can also be
applied to provide privacy-preserving versions of the NashProp algorithm [8], allowing players in
a multiparty game to jointly compute and draw actions from a Nash equilibrium, with each player
learning only his own action and nothing else.6 We are investigating more general applications of
our methods to a broad class of message-passing algorithms that would include many others.

4 Privacy-Preserving Gibbs Sampling

We now move on to the problem of secure Gibbs sampling on an undirected graphical modelG. The
local potential functions accompanyingG can be preprocessed to obtain conditional distributions for
each variable given a setting of all its neighbors (Markov blanket). Thus we henceforth assume that
each variable has access to its local conditional distribution, which it will be convenient to represent
in a particular tabular form. To simplify presentation, we will assume each variable is binary, taking
on values in {0, 1}, but this assumption is easy to relax.

If a node Xi is of degree d, the conditional distribution of Xi given a particular assignment to its
neighbors will be represented by a table Ti with 2d rows and d + 1 columns. The first d columns
range over all 2d possible assignments ~x to N (Xi), while the final column contains the numerical
value P[Xi = 1|N (Xi) = ~x]. We will use Ti(~x) to denote the value P[Xi = 1|N (Xi) = ~x] stored
in the d+ 1st column in the row corresponding to the assignment ~x.

With this notation, the standard (non-private) Gibbs sampling algorithm [4, 2] can be easily de-
scribed. After choosing an initial assignment to all of the variables in G (for instance, uniformly at
random), the algorithm repeatedly resamples values for individual variables conditioned on the cur-
rent values of their neighbors. More precisely, at each step, a variable Xi is chosen for resampling.
Its current value is replaced by randomly drawing value 1 with probability Ti(~x) and value 0 with
probability 1− Ti(~x) where ~x is the current set of assignments to N (Xi).

To implement a privacy-preserving variant of Gibbs sampling, we must solve the following crypto-
graphic problem: how can a set of vertices communicate with their neighbors in order to repeatedly
resample their values from their conditional distributions given their neighbors’ current assignments,
without learning any information except their own final values at the end of the process and anything
that is implied by these values? Again, we would like to accomplish this with limited communication
so that no vertex is required to communicate with a vertex more than two hops away.

5Since the application of standard secure function computation requires broadcast among all participants, it
is a feature of the algorithm that it limits such invocations to three parties at a time.

6See work by Dodis et al. [3] and Teague [12] for more on privacy-preserving computation in game theory.

6

In order for each variable to learn only its final sampled value after some number of iterations, and
not its intermediate resampled values (which may be enough to provide a good approximation of the
marginal distribution on the variable), we first provide a way of distributing the current value of a
vertex so that it cannot be learned by any vertex in isolation. One way of accomplishing this is by
assigning each vertexXi a “distinguished neighbor” N∗(Xi). Xi will hold one bit bi whileN∗(Xi)
will hold a second bit b′i such that the current value of Xi is bi ⊕ b′i.

Using such an encoding, there is a simple but relatively inefficient construction for privacy-
preserving Gibbs sampling that uses only secure multiparty function computation, but that invokes
Theorem 1 on entire neighborhoods of the graph. In graphs with high degree, this requires broad-
cast communication between a large number of parties, which we would like to avoid. Here we
describe a much more communication-efficient protocol using blinded encryption. For concrete-
ness the reader may imagine below that we are using the blindable cryptosystem based on quadratic
residues described in Section 2.2, though other choices are possible.

We begin by describing a sub-protocol for preprocessing the table Ti before resampling begins. Let
S be the 2d indices of the rows of the table Ti. For ease of notation, we will refer to the d neighbors
of Xi as V1, . . . , Vd. The purpose of the sub-protocol is for Xi and its neighbors to compute a
random permutation π of S (which can be thought of as a random permutation of the rows of Ti) in
such a way that during the protocol, each Vj ∈ N (Xi) learns only the sets {π(~x) : Vj = 0} and
{π(~x) : Vj = 1} and Xi learns nothing.

The sub-protocol is quite simple. First each neighbor Vj of Xi encrypts column j of Ti using its
own public key and passes the encrypted column to Xi. Next Xi encrypts column d + 1 using its
own public key. Xi then concatenates the d + 1 encrypted columns together to form an encrypted
version of Ti in which column j is encrypted using the public key of Vj for 1 ≤ j ≤ d and column
d+ 1 is encrypted using the public key of Xi. Xi then takes the resulting table, randomly permutes
the rows, and blinds (randomly re-encrypts) each entry using the appropriate public keys (i.e. the
key of Vj for column j where 1 ≤ j ≤ d and its own public key for column d + 1). At this point,
Xi sends the resulting table to its distinguished neighbor N ∗(Xi).

The purpose of the blinding steps here is to prevent parties from tracking correspondences between
cleartext and encrypted table entries. For instance, without blinding above, N ∗(Xi) could recon-
struct the permutation chosen by Xi by seeing how its own encrypted values have been rearranged.
Now from the perspective of N∗(Xi), d columns of the table will look like uniformly distributed
random bits. N∗(Xi) will still be able to decrypt the column of the table that corresponds to its own
values, but it will become clear that decrypting this column alone cannot yield useful information.

In the next step in the protocol, N∗(Xi) re-encrypts column d + 1 of the table with its own public
key. It then randomly permutes the rows of the table, blinds each entry using the appropriate public
keys (those of Vj for columns 1 ≤ j ≤ d and its own for column d + 1), and sends the updated
table back to Xi. At this point, every entry in the table will look random bits to Xi. Each column
j will be encrypted by the public key of Vj , with the exception of the final column, which will be
encrypted by both Xi and N∗(Xi). Call this new table T ′i .

Once these encrypted tables have been computed for each node, we begin the main Gibbs sampling
protocol. We inductively assume that at the start of each step, for each Xj ∈ X , the current value
of Xj is distributed between Xj and N∗(Xj). At the end of the step, the only information that has
been learned is the new value of a particular node Xi, but distributed between Xi and N∗(Xi).

Consider a neighbor Vj ofXi. Vj can decrypt column j of T ′i in order to learn which rows correspond
to its value being 0 and which rows correspond to its values being 1. While Vj alone does not know
what its current value is, Vj and N∗(Vj) could compute it together, and thus could together figure
out which rows of the permutation correspond to Vj’s current value. By Theorem 1, since there is a
way for them to compute this information ignoring privacy, we can construct an efficient protocol for
Vj , N∗(Vj), and Xi to perform this computation such that Xi learns only the rows that correspond
to Vj’s value (and in particular does not learn what this value is), while Vj andN∗(Vj) learn nothing.

After this secure computation of partitions has been completed for all neighbors of Xi, Xi will be
able to compute the intersection of the subsets of rows it has received from each neighbor. This
intersection will be a single row corresponding to the current values of all nodes in N (Xi). Initially,
Xi will not be able to decrypt any of the entries in this row. However,Xi andN∗(Xi) could together

7

decrypt the value in column d+ 1, use this value in order to sample Xi’s new value according to the
appropriate distribution, and distribute the new value between themselves. Calling upon Theorem 1
once again, this means that we can construct an efficient protocol for Xi and N∗(Xi) to together
complete these computations in such a way that they only learn the new bits bi and b′i respectively.

Each time the value of a node Xi is resampled, Xi and N∗(Xi) repeat the process of blinding and
permuting the rows of T ′i . This prevents Xi and its neighbors from learning how frequently they
take on different values throughout the sampling process. After the value of each node has been
privately resampled sufficiently many times, we can use one final application of secure multi-party
computation between each node Xi and its distinguished neighbor N∗(Xi) to allow Xi to learn its
final value.

As with standard Gibbs sampling, we also need to specify a schedule by which vertices in the
Markov network will have their values updated, as well as the number of iterations of this schedule,
which will in turn determine how close the sampled distribution is to the true joint (stationary)
distribution. Since our interests are in privacy considerations only, let us use PrivateGibbs to
refer to the protocol described above when applied to any fixed Markov network, combined with
some fixed updating schedule (such as random or a fixed ordering) and some number r of iterations.

Theorem 3 Under standard cryptographic assumptions7, PrivateGibbs computes a sample from
the joint distribution after r iterations, with every variable learning its own value and nothing else.
Direct communication occurs only between variables who are immediate neighbors or two steps
away, and secure function computation is never invoked on sets of more than three variables.

The full proof is again omitted, but largely follows the sketch above. We note that PrivateGibbs en-
joys an even stronger privacy property — even if any subset of parties collude by combining their
post-protocol views, they can learn nothing not implied by their combined sampled values. Fur-
thermore, any convergence guarantees that hold for standard Gibbs sampling [4, 5] with the same
updating schedule will also hold for the secure version.

References
[1] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[2] G. Casella and E. George. Explaining the Gibbs sampler. The American Statistician, 46:167–174, 1992.

[3] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem. In CRYPTO,
pages 112–130, 2000.

[4] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

[5] A. Gibbs. Bounding convergence time of the Gibbs sampler in Bayesian image restoration. Biometrika,
87:749–766, 2000.

[6] O. Goldreich. Foundations of Cryptography, Volume 2. Cambridge University Press, 2004.

[7] A. Ihler, J. Fisher III, and A. Willsky. Loopy belief propagation: Convergence and effects of message
errors. Journal of Machine Learning Research, 6:905–936, 2005.

[8] M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In Uncertainty in Artificial
Intelligence, 2001.

[9] M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation. In ACM
Symposium on Theory of Computing, pages 590–599, 2001.

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

[11] P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. In Uncertainty in
Artificial Intelligence, pages 169–198, 1990.

[12] V. Teague. Selecting correlated random actions. In Financial Cryptography, pages 181–195, 2004.

[13] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. In
Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann, 2003.

7An example would be intractability of recognizing quadratic residues.

8

