
Proofs : Local Algorithms for Approximate Inference in Minor-Excluded
Graphs

Proof of Lemma 1. This essentially follows from arguments in [10, 11] We sketch proof of the property (a)
for B being (r/Δ, O(Δ))-decomposition; the proof of (b) follows from Theorem 4.2 [10]. To see property (a),
consider an edge e ∈ E. If e /∈ B in the beginning of iteration 0 ≤ i ≤ r − 1, then it will be present exactly
once in a breadth-first tree, say T i

j . This edge will be chosen in Bi
j only if it is at level Li

j + kΔ, k ≥ 0. The
probability of this is at most 1/Δ since Li

j is chosen u.a.r. from {0, . . . , Δ − 1}. By union bound, it follows
that the probability that an edge is chosen in any of the r iterations is at most r/Δ. This completes the proof of
Lemma 1. �

Proof of Lemma 2. First, we prove properties of log ẐLB, log ẐUB as follows:
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We justify (a)-(d) as follows: (a) holds because by removal of edges B, the G decomposes into disjoint con-
nected components S1, . . . , SK ; (b) holds because of the definition of ψL

ij ; (c) holds by definition ψU
ij and (d)

holds for a similar reason as (a). The claim about difference log ẐUB − log ẐLB in the statement of Lemma
2 follows directly from definitions (i.e. subtract RHS (o) from (d)). This completes proof of claimed relation
between bounds log ẐLB, log ẐUB.

For running time analysis, note that LOG PARTITION performs two main tasks: (i) Decomposing G using
DECOMP algorithm, which by definition take TDECOMP time. (ii) Computing Zj for each component Sj through
exhaustive computation, which takes O(|E|Σ|Sj |) time and producing log ẐLB, log ẐUB takes addition |E|
operations at the most. Since there are K components in total with max-size of component being |S∗| we
obtain that running time for this task is O(|E|KΣ|S∗|). Putting (i) and (ii) together, we obtain the desired
bound. This completes the proof of Lemma 2. �

Proof of Lemma 3. Assign weight wij = ψU
ij − ψL

ij to an edge (i, j) ∈ E. Since graph has maximum vertex
degree D, by Vizing’s theorem there exists an edge-coloring of the graph using at most D + 1 colors. Edges
with the same color form a matching of the G. A standard application of Pigeon-hole’s principle implies that
there is a color with weight at least 1

D+1
(
P

(i,j)∈E wij). Let M ⊂ E denote these set of edges. That is,
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Now, consider a Q ⊂ Σn of size 2|M| created as follows. For (i, j) ∈ M let (xU
i , xU

j ) ∈
arg max(x,x′)∈Σ2 ψij(x, x′). For each i ∈ V , choose xL

i ∈ Σ arbitrarily. Then,

Q = {x ∈ Σn : ∀ (i, j) ∈ M, (xi, xj) = (xU
i , xU

j ) or (xL
i , xL

j ); for all other i ∈ V , xi = xL
i }.

Note that we have used the fact that M is a matching for Q to be well-defined.
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By definition φi, ψij are non-negative function (hence, their exponents are at least 1). Using this property, we
have the following:
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Justification of (o)-(c): (o) follows since ψij , φi are non-negative functions. (a) consider the following
probabilistic experiment: assign (xi, xj) for each (i, j) ∈ M equal to (xU

i , xU
j ) or (xL

i , xL
j ) with prob-

ability 1/2 each. Under this experiment, the expected value of the exp(
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ij . (b) follows from simple algebra and (c) follows by using non-negativity of

function ψij . Therefore,
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using fact about weight of M . This completes the proof of Lemma 3. �

Proof of Lemma 4. From Lemma 2, Lemma 3 and definition of (δ,Δ)-decomposition, we have the following.
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Now to estimate the running time, note that under (δ,Δ) decomposition B, with probability 1 the G′ =
(V, E\B) is divided into connected components with diameter at most Δ with respect to G. Since maxi-
mum vertex degree is D, it follows easily that each of these component has at most DΔ nodes. Now, the
running time bound of Lemma 2 implies the desired result. �

Proof of Theorem 1. The justification about the estimates log ẐLB, log ẐUB follows from (r/Δ, O(Δ))-
decomposition property of DeC algorithm (Lemma 1) and Lemma 4. The bound on running time follows
from Lemma 4 as well. �
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Proof of Lemma 5. By definition of MAP x∗, we have H(cx∗) ≤ H(x∗). Now, consider the following.
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We justify (a)-(d) as follows: (a) holds because for each edge (i, j) ∈ B, we have replaced its effect by
maximal value ψU

ij ; (b) holds because by placing constant value ψU
ij over (i, j) ∈ B, the maximization over

G decomposes into maximization over the connected components of G′ = (V, E\B); (c) holds by definition
of x∗,j and (d) holds because when we obtain global assignment cx∗ from x∗,j , 1 ≤ j ≤ K and compute its
global value, the additional terms get added for each (i, j) ∈ B which add at least ψL

ij amount.

The running time analysis of MODE is exactly the same as that of LOG PARTITION in Lemma 2. Hence, we
skip the details here. This completes the proof of Lemma 5. �

Proof of Lemma 6. Assign weight wij = ψU
ij to an edge (i, j) ∈ E. Using argument of Lemma 3, we obtain

that there exists a matching M ⊂ E such that
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Now, consider an assignment xM as follows: for each (i, j) ∈ M set (xM
i , xM

j ) =

arg max(x,x′)∈Σ2 ψij(x, x′); for remaining i ∈ V , set xM
i to some value in Σ arbitrarily. Note that for

above assignment to be possible, we have used matching property of M . Therefore, we have
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Here (a) follows because ψij , φi are non-negative valued functions. Since H(x∗) ≥ H(xM ) and ψL
ij ≥ 0 for

all (i, j) ∈ E, we obtain the Lemma 6. �
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Proof of Lemma 7. From Lemma 5, Lemma 6 and definition of (δ,Δ)-decomposition, we have the following.
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The running time bound can be obtained using arguments similar to those in Lemma 4. �

Proof of Theorem 2. The justification about the bound on estimate H(cx∗) follows from (r/Δ, O(Δ))-
decomposition property of DeC algorithm (Lemma 1) and Lemma 7. The bound on running time follows
from Lemma 7 as well. �
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