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Abstract

We present a new local approximation algorithm for computing MAP and log-
partition function for arbitrary exponential family distribution represented by a
finite-valued pair-wise Markov random field (MRF), sayG. Our algorithm is
based on decomposingG into appropriatelychosen small components; computing
estimates locally in each of these components and then producing agoodglobal
solution. We prove that the algorithm can provide approximate solution within
arbitrary accuracywhenG excludes some finite sized graph as its minor andG
has bounded degree: all Planar graphs with bounded degree are examples of such
graphs. The running time of the algorithm isΘ(n) (n is the number of nodes in
G), with constant dependent on accuracy, degree of graph and size of the graph
that is excluded as a minor (constant for Planar graphs).
Our algorithm for minor-excluded graphs uses the decomposition scheme of
Klein, Plotkin and Rao (1993). In general, our algorithm works with any decom-
position scheme and provides quantifiable approximation guarantee that depends
on the decomposition scheme.

1 Introduction

Markov Random Field (MRF) based exponential family of distribution allows for representing dis-
tributions in an intuitive parametric form. Therefore, it has been successful for modeling in many
applications Specifically, consider an exponential familyonn random variablesX = (X1, . . . , Xn)
represented by a pair-wise (undirected) MRF with graph structureG = (V,E), where vertices
V = {1, . . . , n} and edge setE ⊂ V × V . EachXi takes value in a finite setΣ (e.g.Σ = {0, 1}).
The joint distribution ofX = (Xi): for x = (xi) ∈ Σn,

Pr[X = x] ∝ exp




∑

i∈V

φi(xi) +
∑

(i,j)∈E

ψij(xi, xj)



 . (1)

Here, functionsφi : Σ → R
+ 4

= {x ∈ R : x ≥ 0}, and ψij : Σ2 → R
+ are as-

sumed to be arbitrary non-negative (real-valued) functions.1 The two most important computa-
tional questions of interest are: (i) finding maximum a-posteriori (MAP) assignmentx∗, where
x∗ = argmaxx∈Σn Pr[X = x]; and (ii) marginal distributions of variables, i.e.Pr[Xi =
x]; for x ∈ Σ, 1 ≤ i ≤ n. MAP is equivalent to aminimal energy assignment(or ground state)
where energy,E(x), of statex ∈ Σn is defined asE(x) = −H(x) + Constant, where H(x) =∑

i∈V φi(xi)+
∑

(i,j)∈E ψij(xi, xj). Similarly, computing marginal is equivalent to computing log-

partition function, defined aslogZ = log
(∑

x∈Σn exp
(∑

i∈V φi(xi) +
∑

(i,j)∈E ψij(xi, xj)
))

.

In this paper, we will findε-approximation solutions of MAP and log-partition function: that is,x̂
andlog Ẑ such that:(1 − ε)H(x∗) ≤ H(x̂) ≤ H(x∗), (1 − ε) logZ ≤ log Ẑ ≤ (1 + ε) logZ.

1Here, we assume the positivity ofφi’s andψij ’s for simplicity of analysis.
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Previous Work. The question of finding MAP (or ground state) comes up in many important appli-
cation areas such as coding theory, discrete optimization,image denoising.Similarly, log-partition
function is used in counting combinatorial objects loss-probability computation in computer net-
works, etc. Both problems are NP-hard for exact and even (constant) approximate computation for
arbitrary graphG. However, applications require solving this problem usingvery simple algorithms.
A plausible approach is as follows. First, identify wide class of graphs that have simple algorithms
for computing MAP and log-partition function. Then, try to build system (e.g. codes) so that such
good graph structure emerges and use the simple algorithm orelse use the algorithm as a heuristic.

Such an approach has resulted in many interesting recent results starting the Belief Propagation
(BP) algorithm designed for Tree graph [1].Since there a vast literature on this topic, we will recall
only few results. Two important algorithms are the generalized belief propagation (BP) [2] and the
tree-reweighted algorithm (TRW) [3,4].Key properties of interest for these iterative procedures are
the correctness of fixed points and convergence. Many results characterizing properties of the fixed
points are known starting from [2]. Various sufficient conditions for their convergence are known
starting [5]. However, simultaneous convergence and correctness of such algorithms are established
for only specific problems, e.g. [6].

Finally, we discuss two relevant results. The first result isabout properties of TRW. The TRW
algorithm provides provable upper bound on log-partition function for arbitrary graph [3]However,
to the best of authors’ knowledge the error is not quantified.The TRW for MAP estimation has
a strong connection to specific Linear Programming (LP) relaxation of the problem [4]. This was
made precise in a sequence of work by Kolmogorov [7], Kolmogorov and Wainwright [8] for binary
MRF. It is worth noting that LP relaxation can be poor even forsimple problems.

The second is an approximation algorithm proposed by Globerson and Jaakkola [9] to compute
log-partition function using Planar graph decomposition (PDC). PDC uses techniques of [3] in con-
junction with known result about exact computation of partition function for binary MRF whenG is
Planar and the exponential family has specific form. Their algorithm provides provable upper bound
for arbitrary graph. However, they do not quantify the errorincurred. Further, their algorithm is
limited to binary MRF.

Contribution. We propose a novel local algorithm for approximate computation of MAP and log-
partition function. For anyε > 0, our algorithm can produce anε-approximate solution for MAP
and log-partition function forarbitrary MRF G as long asG excludes a finite graph as a minor
(precise definition later). For example, Planar graph excludesK3,3,K5 as a minor. The running
time of the algorithm isΘ(n), with constant dependent onε, the maximum vertex degree ofG and
the size of the graph that is excluded as minor. Specifically,for a Planar graph with bounded degree,
it takes≤ C(ε)n time to findε-approximate solution withlog logC(ε) = O(1/ε). In general, our
algorithm works for anyG and we can quantify bound on the error incurred by our algorithm. It is
worth noting that our algorithm provides a provable lower bound on log-partition function as well
unlike many of previous works.

The precise results for minor-excluded graphs are stated inTheorems 1 and 2. The result concerning
general graphs are stated in the form of Lemmas 2-3-4 for log-partition and Lemmas 5-6-7 for MAP.

Techniques. Our algorithm is based on the following idea: First, decomposeG into small-size
connected components sayG1, . . . , Gk by removing few edges ofG. Second, compute estimates
(either MAP or log-partition) in each ofGi separately. Third, combine these estimates to produce a
global estimate whiletaking careof the effect induced by removed edges. We show that the errorin
the estimate depends only on the edges removed. This error bound characterization is applicable for
arbitrary graph.

Klein, Plotkin and Rao [10]introduced a clever and simple decomposition method for minor-
excluded graphs to study the gap between max-flow and min-cutfor multicommodity flows. We
use their method to obtain a good edge-set for decomposing minor-excludedG so that the error
induced in our estimate is small (can be made as small as required).

In general, as long asG allows for such good edge-set for decomposingG into small components,
our algorithm will provide a good estimate. To compute estimates in individual components, we
use dynamic programming. Since each component is small, it is not computationally burdensome.
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However, one may obtain further simpler heuristics by replacing dynamic programming by other
method such as BP or TRW for computation in the components.

2 Preliminaries
Here we present useful definitions and previous results about decomposition of minor-excluded
graphs from [10,11].

Definition 1 (Minor Exclusion) A graphH is called minor ofG if we can transformG into H
through an arbitrary sequence of the following two operations: (a) removal of an edge; (b) merge
two connected verticesu, v: that is, remove edge(u, v) as well as verticesu andv; add a new vertex
and make all edges incident on this new vertex that were incident onu or v. Now, ifH is not a minor
ofG then we say thatG excludesH as a minor.

The explanation of the following statement may help understand the definition:any graphH with
r nodes is a minor ofKr, whereKr is a complete graph ofr nodes. This is true because one may
obtainH by removing edges fromKr that are absent inH . More generally, ifG is a subgraph of
G′ andG hasH as a minor, thenG′ hasH as its minor. LetKr,r denote a complete bipartite graph
with r nodes in each partition. ThenKr is a minor ofKr,r. An important implication of this is as
follows: to prove property P for graphG that excludesH , of sizer, as a minor, it is sufficient to
prove that any graph that excludesKr,r as a minor has property P. This fact was cleverly used by
Klein et. al. [10] to obtain a good decomposition scheme described next. First, a definition.

Definition 2 ((δ, ∆)-decomposition) Given graphG = (V,E), a randomly chosen subset of edges
B ⊂ E is called (δ,∆) decomposition ofG if the following holds: (a) For any edgee ∈ E,
Pr(e ∈ B) ≤ δ. (b) LetS1, . . . , SK be connected components of graphG′ = (V,E\B) obtained by
removing edges ofB fromG. Then, for any such componentSj , 1 ≤ j ≤ K and anyu, v ∈ Sj the
shortest-path distance between(u, v) in the original graphG is at most∆ with probability1.

The existence of(δ,∆)-decomposition implies that it is possible to removeδ fraction of edges so
that graphdecomposesinto connected components whosediameteris small. We describe a simple
and explicit construction of such a decomposition for minorexcluded class of graphs. This scheme
was proposed by Klein, Plotkin, Rao [10] and Rao [11].

DeC(G, r,∆)

(0) Input is graphG = (V,E) andr,∆ ∈ N. Initially, i = 0,G0 = G, B = ∅.

(1) Fori = 0, . . . , r − 1, do the following.

(a) LetSi
1, . . . , S

i
ki

be the connected components ofGi.

(b) For eachSi
j, 1 ≤ j ≤ ki, pick an arbitrary nodevj ∈ Si

j .

◦ Create a breadth-first search treeT i
j rooted atvj in Si

j .

◦ Choose a numberLi
j uniformly at random from{0, . . . ,∆ − 1}.

◦ Let Bi
j be the set of edges at levelLi

j,∆ + Li
j, 2∆ + Li

j , . . . in T i
j .

◦ UpdateB = B ∪ki

j=1 B
i
j .

(c) seti = i+ 1.

(3) OutputB and graphG′ = (V,E\B).

As stated above, the basic idea is to use the following step recursively (upto depthr of recursion):
in each connected component, sayS, choose a node arbitrarily and create a breadth-first searchtree,
sayT . Choose a number, sayL, uniformly at random from{0, . . . ,∆ − 1}. Remove (add toB) all
edges that are at levelL + k∆, k ≥ 0 in T . Clearly, the total running time of such an algorithm is
O(r(n + |E|)) for a graphG = (V,E) with |V | = n; with possible parallel implementation across
different connected components.

The algorithmDeC(G, r,∆) is designed to provide a good decomposition for class of graphs that
excludeKr,r as a minor. Figure 1 explains the algorithm for a line-graph of n = 9 nodes, which
excludesK2,2 as a minor. The example is about a sample run ofDeC(G, 2, 3) (Figure 1 shows the
first iteration of the algorithm).
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Figure 1: The first of two iterations in execution ofDeC(G, 2, 3) is shown.

Lemma 1 If G excludesKr,r as a minor, then algorithmDeC(G, r,∆) outputsB which is
(r/∆, O(∆))-decomposition ofG.

It is known that Planar graph excludesK3,3 as a minor. Hence, Lemma 1 implies the following.

Corollary 1 Given a planar graphG, the algorithm DeC(G, 3,∆) produces(3/∆, O(∆))-
decomposition for any∆ ≥ 1.

3 Approximate log Z

Here, we describe algorithm for approximate computation oflogZ for any graphG. The algorithm
uses a decomposition algorithm as a sub-routine. In what follows, we use term DECOMP for a
generic decomposition algorithm. The key point is that our algorithm provides provable upper and
lower bound onlogZ for any graph; the approximation guarantee and computationtime depends on
the property of DECOMP. Specifically, forKr,r minor excludedG (e.g. Planar graph withr = 3),
we will useDeC(G, r,∆) in place of DECOMP. Using Lemma 1, we show that our algorithm based
onDeCprovides approximation upto arbitrary multiplicative accuracy by tuning parameter∆.

LOG PARTITION(G)

(1) Use DECOMP(G) to obtainB ⊂ E such that

(a) G′ = (V,E\B) is made of connected componentsS1, . . . , SK .

(2) For each connected componentSj, 1 ≤ j ≤ K, do the following:

(a) Compute partition functionZj restricted toSj by dynamic programming(or exhaus-
tive computation).

(3) LetψL
ij = min(x,x′)∈Σ2 ψij(x, x

′), ψU
ij = max(x,x′)∈Σ2 ψij(x, x

′). Then

log ẐLB =

K∑

j=1

logZj +
∑

(i,j)∈B

ψL
ij ; log ẐUB =

K∑

j=1

logZj +
∑

(i,j)∈B

ψU
ij .

(4) Output: lower boundlog ẐLB and upper boundlog ẐUB.

In words, LOG PARTITION(G) produces upper and lower bound onlogZ of MRF G as follows:
decompose graphG into (small) componentsS1, . . . , SK by removing (few) edgesB ⊂ E using
DECOMP(G). Compute exact log-partition function in each of the components. To produce bounds
log ẐLB, log ẐUB take the summation of thus computed component-wise log-partition function along
with minimal and maximal effect of edges fromB.

Analysis of LOG PARTITION for General G : Here, we analyze performance of LOG PARTI-
TION for anyG. In the next section, we will specialize our analysis for minor excludedG when
LOG PARTITION usesDeC as the DECOMPalgorithm.

Lemma 2 Given an MRFG described by (1), theLOG PARTITION produceslog ẐLB, log ẐUB such
that

log ẐLB ≤ logZ ≤ log ẐUB, log ẐUB − log ẐLB =
∑

(i,j)∈B

(
ψU

ij − ψL
ij

)
.
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It takesO
(
|E|KΣ|S∗|

)
+ TDECOMP time to produce this estimate, where|S∗| = maxK

j=1 |Sj | with
DECOMPproducing decomposition ofG into S1, . . . , SK in timeTDECOMP.

Lemma 3 If G has maximum vertex degreeD then,logZ ≥ 1
D+1

[∑
(i,j)∈E ψ

U
ij − ψL

ij

]
.

Lemma 4 If G has maximum vertex degreeD and theDECOMP(G) producesB that is (δ,∆)-
decomposition, then

E

[
log ẐUB − log ẐLB

]
≤ δ(D + 1) logZ,

w.r.t. the randomness inB, andLOG PARTITION takes timeO(nD|Σ|D
∆

) + TDECOMP.

Analysis of LOG PARTITION for Minor-excluded G : Here, we specialize analysis of LOG PAR-
TITIONfor minor exclude graphG. ForG that exclude minorKr,r, we use algorithmDeC(G, r,∆).
Now, we state the main result for log-partition function computation.
Theorem 1 LetG excludeKr,r as minor and haveD as maximum vertex degree. Givenε > 0, use

LOG PARTITION algorithm withDeC(G, r,∆) where∆ = d r(D+1)
ε

e. Then,

log ẐLB ≤ logZ ≤ log ẐUB; E

[
log ẐUB − log ẐLB

]
≤ ε logZ.

Further, algorithm takes(nC(D, |Σ|, ε)), where constantC(D, |Σ|, ε) = D|Σ|D
O(rD/ε)

.

We obtain the following immediate implication of Theorem 1.
Corollary 2 For anyε > 0, theLOG PARTITION algorithm withDeCalgorithm for constant degree
Planar graphG based MRF, produceslog ẐLB, log ẐUB so that

(1 − ε) logZ ≤ log ẐLB ≤ logZ ≤ log ẐUB ≤ (1 + ε) logZ,

in timeO(nC(ε)) wherelog logC(ε) = O(1/ε).

4 Approximate MAP
Now, we describe algorithm to compute MAP approximately. Itis very similar to the LOG PAR-
TITION algorithm: givenG, decompose it into (small) componentsS1, . . . , SK by removing (few)
edgesB ⊂ E. Then, compute an approximate MAP assignment by computing exact MAP restricted
to the components. As in LOG PARTITION, the computation time and performance of the algorithm
depends on property of decomposition scheme. We describe algorithm for any graphG; which will
be specialized forKr,r minor excludedG usingDeC(G, r,∆).

MODE(G)

(1) Use DECOMP(G) to obtainB ⊂ E such that

(a) G′ = (V,E\B) is made of connected componentsS1, . . . , SK .

(2) For each connected componentSj, 1 ≤ j ≤ K, do the following:

(a) Through dynamic programming (or exhaustive computation) find exact MAPx∗,j for
componentSj , wherex∗,j = (x∗,j

i )i∈Sj .

(3) Produce output̂x∗, which is obtained by assigning values to nodes usingx∗,j , 1 ≤ j ≤ K.

Analysis of MODE for General G : Here, we analyze performance of MODE for anyG. Later,
we will specialize our analysis for minor excludedG when it usesDeC as the DECOMPalgorithm.

Lemma 5 Given an MRFG described by (1), theMODE algorithm produces outputŝx∗ such that
H(x∗) −

∑
(i,j)∈B

(
ψU

ij − ψL
ij

)
≤ H(x̂∗) ≤ H(x∗). It takesO

(
|E|KΣ|S∗|

)
+ TDECOMP time to

produce this estimate, where|S∗| = maxK
j=1 |Sj | with DECOMPproducing decomposition ofG into

S1, . . . , SK in timeTDECOMP.

Lemma 6 If G has maximum vertex degreeD, then

H(x∗) ≥
1

D + 1




∑

(i,j)∈E

ψU
ij



 ≥
1

D + 1




∑

(i,j)∈E

ψU
ij − ψL

ij



 .
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Lemma 7 If G has maximum vertex degreeD and theDECOMP(G) producesB that is (δ,∆)-
decomposition, then

E

[
H(x∗) −H(x̂∗)

]
≤ δ(D + 1)H(x∗),

where expectation is w.r.t. the randomness inB. Further,MODE takes timeO(nD|Σ|D
∆

)+TDECOMP.

Analysis of MODE for Minor-excluded G : Here, we specialize analysis of MODE for minor
exclude graphG. ForG that exclude minorKr,r, we use algorithmDeC(G, r,∆). Now, we state
the main result for MAP computation.

Theorem 2 LetG excludeKr,r as minor and haveD as the maximum vertex degree. Givenε > 0,

useMODE algorithm withDeC(G, r,∆) where∆ = d r(D+1)
ε

e. Then,

(1 − ε)H(x∗) ≤ H(x̂∗) ≤ H(x∗).

Further, algorithm takesn · C(D, |Σ|, ε) time, where constantC(D, |Σ|, ε) = D|Σ|D
O(rD/ε)

.

We obtain the following immediate implication of Theorem 2.

Corollary 3 For anyε > 0, theMODE algorithm withDeC algorithm for constant degree Planar
graphG based MRF, produces estimatêx∗ so that

(1 − ε)H(x∗) ≤ H(x̂∗) ≤ H(x∗),

in timeO(nC(ε)) wherelog logC(ε) = O(1/ε).

5 Experiments
Our algorithm provides provably good approximation for anyMRF with minor excluded graph
structure, with planar graph as a special case. In this section, we present experimental evaluation of
our algorithm for popular synthetic model.

Setup 1.2 Consider binary (i.e.Σ = {0, 1}) MRF on ann× n latticeG = (V,E):

Pr(x) ∝ exp




∑

i∈V

θixi +
∑

(i,j)∈E

θijxixj



 , for x ∈ {0, 1}n2

.

Figure 2 shows a lattice or grid graph withn = 4 (on the left side). There are two scenarios for
choosing parameters (with notationU [a, b] being uniform distribution over interval[a, b]):

(1) Varying interaction.θi is chosen independently from distributionU [−0.05, 0.05] andθij chosen
independent fromU [−α, α] with α ∈ {0.2, 0.4, . . . , 2}.

(2) Varying field.θij is chosen independently from distributionU [−0.5, 0.5] andθi chosen indepen-
dently fromU [−α, α] with α ∈ {0.2, 0.4, . . . , 2}.

The grid graph is planar. Hence, we run our algorithms LOG PARTITION and MODE, with decom-
position schemeDeC(G, 3,∆), ∆ ∈ {3, 4, 5}. We consider two measures to evaluate performance:
error inlogZ, defined as1

n2 | logZalg− logZ|; and error inH(x∗), defined as1
n2 |H(xalg−H(x∗)|.

We compare our algorithm for error inlogZ with the two recently very successful algorithms –
Tree re-weighted algorithm (TRW) and planar decompositionalgorithm (PDC). The comparison is
plotted in Figure 3 wheren = 7 and results are averages over40 trials. The Figure 3(A) plots
error with respect to varying interaction while Figure 3(B)plots error with respect to varying field
strength. Our algorithm, essentially outperforms TRW for these values of∆ and perform very
competitively with respect to PDC.

The key feature of our algorithm is scalability. Specifically, running time of our algorithm with a
given parameter value∆ scales linearly inn, while keeping the relative error bound exactly the
same. To explain this important feature, we plot the theoretically evaluated bound on error inlogZ

2Though this setup hasφi, ψij taking negative values, they are equivalent to the setup considered in the
paper as the function values are lower bounded and henceaffineshift will make them non-negative without
changing the distribution.
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in Figure 4 with tags (A), (B) and (C). Note that error bound plot is the same forn = 100 (A) and
n = 1000 (B). Clearly, actual error is likely to be smaller than thesetheoretically plotted bounds.
We note that these bounds only depend on the interaction strengths andnot on the values of fields
strengths (C).

Results similar to of LOG PARTITION are expected from MODE. We plot the theoretically evaluated
bounds on the error in MAP in Figure 4 with tags (A), (B) and (C). Again, the bound on MAP relative
error for given∆ parameter remains the same for all values ofn as shown in (A) forn = 100 and
(B) for n = 1000. There is no change in error bound with respect to the field strength (C).

Setup 2.Everything is exactly the same as the above setup with the only difference that grid graph
is replaced bycris-crossgraph which is obtained by adding extra four neighboring edges per node
(exception of boundary nodes). Figure 2 shows cris-cross graph withn = 4 (on the right side).
We again run the same algorithm as above setup on this graph. For cris-cross graph, we obtained
its graph decomposition from the decomposition of its grid sub-graph. graph Though the cris-cross
graph is not planar, due to the structure of the cris-cross graph it can be shown (proved) that the
running time of our algorithm will remain the same (in order)and error bound will become only3
times weaker than that for the grid graph ! We compute these theoretical error bounds forlogZ and
MAP which is plotted in Figure 5. This figure is similar to the Figure 4 for grid graph. This clearly
exhibits the generality of our algorithm even beyond minor excluded graphs.
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Figure 2: Example of grid graph (left) and cris-cross graph (right) with n = 4.

7



Z Error

Z Error

(1-A) Grid, N=7

Interaction Strength

TRW

PDC

3

4

5

(1-B) Gird, n=7

Field Strength

TRW

PDC

3

4

5

Figure 3: Comparison of TRW, PDC and our algorithm for grid graph withn = 7 with respect to error inlog Z. Our algorithm outperforms TRW and is
competitive with respect to PDC.
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Figure 4: The theoretically computable error bounds forlog Z and MAP under our algorithm for grid withn = 100 andn = 1000 under varying
interaction and varying field model. This clearly shows scalability of our algorithm.
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(5-A) Criss Cross, n=100

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Interaction Strength

5

20

10

Figure 5:The theoretically computable error bounds forlog Z and MAP under our algorithm for cris-cross withn = 100 andn = 1000 under varying
interaction and varying field model. This clearly shows scalability of our algorithm and robustness to graph structure.
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