Supplement to "Kernel Measures of Conditional Dependence”

This supplementary material provides the technical proofitted in the submitted paper. The
reference and equation numbers in this material follow Hysep.

A Proof of Theorem 2

Proof of Theorem 2Without loss of generality we can assud@) = 1. From the positive defi-
niteness ok, we have¢(z)|? < ¢(0)? = 1. Recall that the RKHS associated withas an explicit
expression

P
o)

where¢ andf are the Fourier transforms ¢fand f, respectively.

”H:{feLQ(]Rm)‘/ du<oo}, (12)

Let P be an arbitrary Borel probability dR™, and¢ € R™ be arbitrary. Since the Fourier transform
of e V=1 2 ¢(z /1) is equal tod(r(u + £)), from Eq. (12) and the assumption of the theorem the
functione*\/*_lgng(z/r) belongs toH for anyr > 75. Thus, the bounded convergence theorem
guarantees

Ep|ef‘/7_15Tz — 67‘/7_15Tz<;5(z'/7')|2 — 0 (1 = o).

This implies that we have only to prove that the linear huII{ameTZ | £ € R™} is dense in
L?(P).

Let f be an arbitrary function irL?(P). We can assumg is continuously differentiable with
a compact support, because those functions are dens&(ih). Lete > 0 be arbitrary,M =
sup,cr | f(x)], and A be a positive number such that A, A|™ contains the support of and
P([—A, A]™) > 1—¢/4M?. Itis well known [13, Theorem 11.8] that the series of furccts

N N T
fnz)= >0 o > et M (NEN)

ni=—N Ny =—N

(n = (n1,...,n,) € (NU{0})™) with the Fourier coefficients

1 / _x/=T,T
Cn = — flz)e @ ™ *dz
(24)™ Ji_a,am

converges uniformly tgf(z) on [—A, A]™, asN — oo. Thus, for sufficiently largeV, we have
|f(z) — fn(2)]* < e/2 on[—A, A]™, and the periodicity off v (z) ensuresup. g |fn(2)]? <
(M + /e/2)? < 2M?. We obtainEp|f — fn|? < &, which completes the proof. O

B Proof of Theorem 4

We start with a lemma.

Lemma 6. Assume that the kernels and the random variables satisty) (Ard# = + R is dense in
L?(Pz). Then,

(9, V3V 2Vax BV Dy = B[ (BLA(X)12] - BL7(0)) (Elg(X)12] - Elg(X)]) .

Proof. Since it is known [8] thak ; ; is Hilbert-Schmidt under the assumption (A-1), there axist
a CONS{¢;}2, of Hz such that;z¢; = \;¢; with an eigenvalue; > 0. Letl, = {i € N |
A; > 0}, and define

~ 1

¢i = \//\_i(d)i - E[¢(2)))




fori € I,. Becaus&Rk (Vzy ) andR(Vzx) are orthogonal tdV' (X2 ), we have

(9, E¥5VY2V2X2¥§f>Hy

= {60 Var Sy ), (0 Vax SN F)y,

i=1

= Z ¢Z,VZYEy/y9>Hy<¢z,VZX21/Z Y

icly

—Z§< ¢z>EZYg> <\/1Xi¢i’EZXf>Hx

= Z (61, E[9(Y)|Z] — Elg (Y)])LZ(pZ)(@,E[f(XNZ] —E[f(X)])LZ(pZ)-
icly

Obviously,{¢~>z-}z-ebr is an orthonormal system ih, (Pz). Furthermore, from the assumption that
Hz + Ris dense inL?(Py), the systen{; }icr, U {1} is a CONS inL?(Py). This implies

(9, SV Vw2 Vax S5 Py
= (Elg(V)|2] - Elg(Y)], E[f(X)|2] = E[f(X)]) 1, (p)
— (LE[gW)IZ] = Elg(V)]) 1, . (L ELF(X)IZ] = E[F (X)), )
= By | (Elg(¥)|Z] - Elg(¥)]) (EIf (X)|Z] - E[f ()],
which proves the lemma. O

Using the above lemma, Theorem 4 is proved as follows.

Proof of Theorem 4Let {¢;}72, and{v;}32, be complete orthonormal systems#f and#y,
respectively, consisting of the eigenfunction$bf x andXyy with Xx x¢; = A\;¢; (A; > 0) and
Yyyv; = v;¢; (v; > 0). Then, we have the expansion

Vyxizllis = D @5 Vex iy, —2 D (W, Vv x diday (5, Vv 2Vzx diday
i=1 ij=1
+ Z (5, Vy 2Vax di)i,, - (13)
i,j=1

LetIf ={i e N| X\; > 0}andIl¥ = {i € N|v; > 0}. Inasimilar manner to the proof of Lemma

6, with the notations; = (¢; — E[¢:(X)])/v/X; andd; = (v; — E[y;(Y)])/,/7; fori € I and

JE€E [}:* the first term of Eq. (13) is rewritten as

> W Tyxdi, = Y. Eyx [4;(Y)d:(X)]”

iel ¥ jely ielf jely

> //X pxy (z,y)di(x )@j(y)duxduy)2-

i€l jely

Let ¢p = 1~a~ndz/~10 = 1. From the assumption théH y ® Hy) + R is dense inL?(Px ® Py),
the class{qsiwj}ielfu{o}dequ{o} is a CONS ofL,(Px ® Py). Thus, the last line of the above
equations is further rewritten as

pxy(z,y)
pX(fL")pY(Z/)

- E[g(X)]- Y B[] -1

La(Px®Py)  yepx jery

// pXY duxduy -1
XXy pX )
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For the second term of Eq. (13), Lemma 6 implies

(o)

D Wi Vv xdiduy (05, Ve 2Vax diduy

ij=1

= Z <¢~’j>EYX&i}Hy<1/;j,2¥;2zVYZVZXE¥)2(¢Ei>Hy
iel ¥ jely

= Y EM&X]EEW,;(Y)Z] Blé:(X)|Z]

iel ¥ jely

= > / Xxy $i(z)pxy (=, y)duxduy/ b () bi(@)px 1y |z (x, y)dpadpy

zeIX,]eIY Xy

- <1/~)q~5 pXY) (&1/3 px¢wz>
ie[fv]’eli ! “poY LZ(PX@PY) L poY L2(Px®Py)

By a similar argument to the case of the first term, the secerd 6f Eq. (13) equals
_2< pxy M) Lo,
PxPy PxPy L(Px ®Py)

and the third term of Eq. (13) equals

2
HpXJ.LYZ _1

PxPy Lo(Px®Py)
This completes the proof. O

C Proof of Theorem 5

Proof. From the expressions in Eq. (3) and Eq. (6), it is sufficierurm/e||17)§§2 —Wxl|lus =0
in probability. The proof is analogous to those of Lemma 6 @nd [4], though considering the
Hilbert-Schmidt norm is more involved.

From the trivial decomposition

IV = Vexllus < VAN — (Syy +end) ™Sy x (Sxx +2al) 72|
+ | Syy +enl) 28y x (Sxx +end) T = Vi x| o
it suffices to show
IV = (Byy +ead) V2 Sy x(Sxx +2ad) V2|, = Op(e, 2?0712, (14)

and
|(Syy +e.D) ™Sy x (Sxx +enD) ™2 = Vx| g = 0(1). (15)

The operator on the left hand side of Eq. (14) is decomposed as
{(f]gﬁg), +e, )72 = (Syy +enl _1/2}2(71) A(") Y e, I) 72
+ (Syy +enD) HET) - Sy x FEWK + En[)fl/z
+ (Syy + )78y {ETK +2n D)7V = (Sxx +ead) 7). (16)
From the equality
A-1/2 _ g1/2 — 4-1/2 (33/2 _ A3/2)B—3/2 +(A- B)B_3/2,
the first term of Eq. (16) is equal to
{EW +enD) ™2 (Syy +ea)” = (EF) +2.0)""} + (B - Svv) }
X (f]gﬁ;), + snI)_3/2§§7))((f]g?;( + e I)"Y2,
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Using|| (4 +e.1) /2| < == [(E0) +e,0) S0 (B4 +6aI) || < 1,and Lemma

7 below, the HS norm of the above operator is bounded fromabgv

13 1/2 (n) 1/2

- { e max{ Sy enl IS | + LI - Svyllas.
A similar bound also applies to the HS norm of the third ternEmp (16). An upper bound on
the HS norm of the second term is simprHny - E%LHHS. Thus, Eq. (14) is obtained by
noticing| [ || = [[Sxxll+0p (1), IEFY ]| = 12y y || +0,(1), and the fach 7} — Sy x|l =
0,(1/4/n) [4, Lemma 5].

To prove Eq. (15), take CONS%p; }72; and{s);}32, for Ha andHy, respectively, in the same
manner as in the proof of Theorem 4. We have

”(EYY + snI)fl/ Yyx(Exx + 5n1)71/2 - VYX”iIS

(e}

= D (W {Syy +en) T PEyx (Sxx +end) V2 - Vyx}ﬁbiﬁw
5,J=1

= ) \2
- S et

Because each summand in the last line is upper bounded/)pWyxgbi)%{y and the series
foj:l(wj, Vyx(bi)%{y is finite from the assumption thdf x is Hilbert-Schmidt, the dominated

convergence theorem guarantees the interchangeabititg aferies and the limit, — 0; thus, we
have

lim ||(EYY +e )Ty x (Sxx +e D)2 - VYX”iIS
e—0

_ Elnlgo{v A +€n \[ Vz_'_gn _1} QIZ)]’VYX¢7’>’HX :0

This shows Eq. (15) and completes the proof. O

Lemma 7. Supposed and B are positive, self-adjoint, Hilbert-Schmidt operators arHilbert
space. Then,
1432 — B*/|| 1 < 3(max{|AIL, | BII})"* |4 = Bllus.

Proof. Without loss of generality we can assumex{||A|,||B||} = 1. Then, we have)
A, B < I. Define functionsf andg on {z € C | |2| < 1} by f(2) = (1 — 2)%/? andg(z)

(1—2)'/2 Let
= Z bpz" and  g(z) = Z ez
n=1 n=0

be the power series expansions. They converge absolute|y|fel 1. Using the factdy =
by = —%, andb, > 0 (n > 2), the inequality

N 3 N 3 N
;|bn|:1+§+r§bn:1+§+gg;bw

3 3
< — i — — =
—1+2+1£¢m1{f(x) 1+2} 3

A

[a—y

is obtained for allV. The boundy">" ,|c.| < 2 can be proved similarly. Obviouslynb,,| = |c,|
forn > 2 and|b;| = £|co|.

Define a series of operatof® n }%°_, by

N
Dy =3 ba((I = A" = (I - BY").
n=0
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Expansion of the right hand side shows tiigy is Hilbert-Schmidt. The Hilbert-Schmidt norm of
Dy satisfies

N
IDxlles < D balll( = A" = (I = B)"||us.

n=0
We can prove by induction thitI — A)" — (I — B)"||us < n||A — B||us holds for alln; in fact,
this follows from the inequality

(I — A)™ — (I - B)"|lus
=(I-4) - -B)I-A)""+I-B)((I-A)""~I-B)""
< I = A" YA = Bllgs + I = B|l|(I = A" = (1 = B)" ™| ,4-

Mis

Thus, we obtain

N N
3
IDNlls <Y nlball[A = Bllus < 3 > lealllA = Bllms,
n=0 n=0
which impliesD y is a Cauchy sequence in the Hilbert space of the Hilbert-&tfoperators. Thus,
there is a Hilbert-Schmidt operatd, such thal|Dy — D.||zs — 0. On the other hand, from the
factO < I — A, I — B < 1,inthe expression

N N
Dy =) ba(I-A)" = b(I-B)",
n=0 n=0

the two terms in the right hand side converge in operator notat/2 andB3/2, respectively; hence
Dy — A3/2 — B3/2 in operator norm. This necessarily medis= A%/?> — B3/2, and we have

N
. 3 .
1432 = B*2||ys = lim |IDxllns < 5 lim > Jeall|4 = Bllus = 314 = Bllus.
n=0
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