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Abstract

Active learning is the problem in supervised learning to design the loca-
tions of training input points so that the generalization error is minimized.
Existing active learning methods often assume that the model used for
learning is correctly specified, i.e., the learning target function can be ex-
pressed by the model at hand. In many practical situations, however, this
assumption may not be fulfilled. In this paper, we first show that the ex-
isting active learning method can be theoretically justified under slightly
weaker condition: the model does not have to be correctly specified, but
slightly misspecified models are also allowed. However, it turns out that
the weakened condition is still restrictive in practice. To cope with this
problem, we propose an alternative active learning method which can be
theoretically justified for a wider class of misspecified models. Thus,
the proposed method has a broader range of applications than the exist-
ing method. Numerical studies show that the proposed active learning
method is robust against the misspecification of models and is thus reli-
able.

1 Introduction and Problem Formulation

Let us discuss the regression problem of learning a real-valued functionf(x) defined onRd from training examplesf(xi; yi) j yi = f(xi) + �igni=1;
wheref�igni=1 are i.i.d. noise with mean zero and unknown variance�2. We use the fol-
lowing linear regression model for learning.bf (x) = pXi=1 �i'i(x);
wheref'i(x)gpi=1 are fixed linearly independent functions and� = (�1; �2; : : : ; �p)>
are parameters to be learned.

We evaluate the goodness of the learned functionbf (x) by the expected squared test error
over test input points and noise (i.e., thegeneralization error). When the test input points
are drawn independently from a distribution with densitypt(x), the generalization error is
expressed as G = E� Z � bf (x) � f(x)�2 pt(x)dx;



whereE� denotes the expectation over the noisef�igni=1. In the following, we suppose thatpt(x) is known1.

In a standard setting of regression, the training input points are provided from the environ-
ment, i.e.,fxigni=1 independently follow the distribution with densitypt(x). On the other
hand, in some cases, the training input points can be designed by users. In such cases,
it is expected that the accuracy of the learning result can be improved if the training input
points are chosen appropriately, e.g., by densely locating training input points in the regions
of high uncertainty.

Active learning—also referred to asexperimental design—is the problem of optimizing the
location of training input points so that the generalization error is minimized. In active
learning research, it is often assumed that the regression model is correctly specified [2,
1, 3], i.e., the learning target functionf(x) can be expressed by the model. In practice,
however, this assumption is often violated.

In this paper, we first show that the existing active learning method can still be theoreti-
cally justified when the model is approximately correct in a strong sense. Then we propose
an alternative active learning method which can also be theoretically justified for approx-
imately correct models, but the condition on the approximate correctness of the models is
weaker than that for the existing method. Thus, the proposed method has a wider range of
applications.

In the following, we suppose that the training input pointsfxigni=1 are independently drawn
from a user-defined distribution with densitypx(x), and discuss the problem of finding the
optimal density function.

2 Existing Active Learning Method

The generalization errorG defined by Eq.(1) can be decomposed asG = B + V;
whereB is the (squared)biasterm andV is thevarianceterm given byB = Z �E� bf (x)� f(x)�2 pt(x)dx and V = E� Z � bf (x)� E� bf (x)�2 pt(x)dx:
A standard way to learn the parameters in the regression model (1) is theordinary least-
squares learning, i.e., parameter vector� is determined as follows.b�OLS = argmin� " nXi=1 � bf (xi) � yi�2# :
It is known thatb�OLS is given by b�OLS = LOLSy;
whereLOLS = (X>X)�1X>; Xi;j = 'j(xi); and y = (y1; y2; : : : ; yn)>:
Let GOLS, BOLS andVOLS beG, B andV for the learned function obtained by the
ordinary least-squares learning, respectively. Then the following proposition holds.

1In some application domains such as web page analysis or bioinformatics, a large number of
unlabeled samples—input points without output values independently drawn from the distribution
with densitypt(x)—are easily gathered. In such cases, a reasonably good estimate ofpt(x) may
be obtained by some standard density estimation method. Therefore, the assumption thatpt(x) is
known may not be so restrictive.



Proposition 1 ([2, 1, 3]) Suppose that the model is correctly specified, i.e., the learning
target functionf(x) is expressed asf(x) = pXi=1 ��i'i(x):
ThenBOLS andVOLS are expressed asBOLS = 0 and VOLS = �2JOLS ;
where JOLS = tr(ULOLSL>OLS) and Ui;j = Z 'i(x)'j(x)pt(x)dx:
Therefore, for the correctly specified model (1), the generalization errorGOLS is expressed
as GOLS = �2JOLS :
Based on this expression, the existing active learning method determines the location of
training input pointsfxigni=1 (or the training input densitypx(x)) so thatJOLS is mini-
mized [2, 1, 3].

3 Analysis of Existing Method under Misspecification of Models

In this section, we investigate the validity of the existing active learning method for mis-
specified models.

Suppose the model does not exactly include the learning target functionf(x), but it ap-
proximatelyincludes it, i.e., for a scalarÆ such thatjÆj is small,f(x) is expressed asf(x) = g(x) + Ær(x);
whereg(x) is the orthogonal projection off(x) onto the span off'i(x)gpi=1 and the
residualr(x) is orthogonal tof'i(x)gpi=1:g(x) = pXi=1 ��i'i(x) and

Z r(x)'i(x)pt(x)dx = 0 for i = 1; 2; : : :; p:
In this case, the bias termB is expressed asB = Z �E� bf (x)� g(x)�2 pt(x)dx+ C; where C = Z (g(x)� f(x))2 pt(x)dx:
SinceC is constant which does not depend on the training input densitypx(x), we subtractC in the following discussion.

Then we have the following lemma2.

Lemma 2 For the approximately correct model (3), we haveBOLS � C = Æ2hULOLSzr;LOLSzri = O(Æ2);VOLS = �2JOLS = Op(n�1);
where zr = (r(x1); r(x2); : : : ; r(xn))>:

2Proofs of lemmas are provided in an extended version [6].



Note that the asymptotic order in Eq.(1) is in probability sinceVOLS is a random variable
that includesfxigni=1. The above lemma implies thatGOLS � C = �2JOLS + op(n�1) if Æ = op(n� 12 ):
Therefore, the existing active learning method of minimizingJOLS is still justified if Æ =op(n� 12 ). However, whenÆ 6= op(n� 12 ), the existing method may not work well because
the bias termBOLS � C is not smaller than the variance termVOLS , so it can not be
neglected.

4 New Active Learning Method

In this section, we propose a new active learning method based on the weighted least-
squares learning.

4.1 Weighted Least-Squares Learning

When the model is correctly specified,b�OLS is an unbiased estimator of��. However, for
misspecified models,b�OLS is generally biased even asymptotically ifÆ = Op(1).
The bias ofb�OLS is actually caused by thecovariate shift[5]—the training input densitypx(x) is different from the test input densitypt(x). For correctly specified models, in-
fluence of the covariate shift can be ignored, as the existing active learning method does.
However, for misspecified models, we should explicitly cope with the covariate shift.

Under the covariate shift, it is known that the followingweighted least-squares learningis
asymptotically unbiased even ifÆ = Op(1) [5].b�WLS = argmin� " nXi=1 pt(xi)px(xi) � bf (xi) � yi�2# :
Asymptotic unbiasedness ofb�WLS would be intuitively understood by the following iden-
tity, which is similar in spirit toimportance sampling:Z �bf(x)� f(x)�2 pt(x)dx = Z �bf (x)� f(x)�2 pt(x)px(x)px(x)dx:
In the following, we assume thatpx(x) is strictly positive for allx. LetD be the diagonal
matrix with thei-th diagonal elementDi;i = pt(xi)px(xi) :
Then it can be confirmed thatb�WLS is given byb�WLS = LWLSy; where LWLS = (X>DX)�1X>D:
4.2 Active Learning Based on Weighted Least-Squares Learning

Let GWLS , BWLS andVWLS beG, B andV for the learned function obtained by the
above weighted least-squares learning, respectively. Then we have the following lemma.

Lemma 3 For the approximately correct model (3), we haveBWLS �C = Æ2hULWLSzr;LWLSzri = Op(Æ2n�1);VWLS = �2JWLS = Op(n�1);
where JWLS = tr(ULWLSL>WLS ):



This lemma implies thatGWLS �C = �2JWLS + op(n�1) if Æ = op(1):
Based on this expression, we propose determining the training input densitypx(x) so thatJWLS is minimized.

The use of the proposed criterionJWLS can be theoretically justified whenÆ = op(1),
while the existing criterionJOLS requiresÆ = op(n� 12 ). Therefore, the proposed method
has a wider range of applications. The effect of this extension is experimentally investigated
in the next section.

5 Numerical Examples

We evaluate the usefulness of the proposed active learning method through experiments.

Toy Data Set: We first illustrate how the proposed method works under a controlled
setting.

Let d = 1 and the learning target functionf(x) bef(x) = 1� x+ x2+ Æx3. Letn = 100
andf�ig100i=1 be i.i.d. Gaussian noise with mean zero and standard deviation0:3. Let pt(x)
be the Gaussian density with mean0:2 and standard deviation0:4, which is assumed to be
known here. Letp = 3 and the basis functions be'i(x) = xi�1 for i = 1; 2; 3. Let us
consider the following three cases.Æ = 0; 0:04; 0:5, where each case corresponds to “cor-
rectly specified”, “ approximately correct”, and “misspecified” (see Figure 1). We choose
the training input densitypx(x) from the Gaussian density with mean0:2 and standard
deviation0:4, where  = 0:8; 0:9; 1:0; : : :; 2:5:
We compare the accuracy of the following three methods:

(A) Proposed active learning criterion + WLS learning : The training input density is
determined so thatJWLS is minimized. Following the determined input density,
training input pointsfxig100i=1 are created and corresponding output valuesfyig100i=1
are observed. Then WLS learning is used for estimating the parameters.

(B) Existing active learning criterion + OLS learning [2, 1, 3]: The training input den-
sity is determined so thatJOLS is minimized. OLS learning is used for estimating
the parameters.

(C) Passive learning + OLS learning: The test input densitypt(x) is used as the training
input density. OLS learning is used for estimating the parameters.

First, we evaluate the accuracy ofJWLS andJOLS as approximations ofGWLS andGOLS .
The means and standard deviations ofGWLS , JWLS , GOLS , andJOLS over100 runs are
depicted as functions of in Figure 2. These graphs show that whenÆ = 0 (“correctly
specified”), both JWLS andJOLS give accurate estimates ofGWLS andGOLS . WhenÆ = 0:04 (“approximately correct”), JWLS again works well, whileJOLS tends to be
negatively biased for large. This result is surprising since as illustrated in Figure 1, the
learning target functions withÆ = 0 andÆ = 0:04 are visually quite similar. Therefore,
it intuitively seems that the result ofÆ = 0:04 is not much different from that ofÆ = 0.
However, the simulation result shows that this slight difference makesJOLS unreliable.
WhenÆ = 0:5 (“misspecified”), JWLS is still reasonably accurate, whileJOLS is heavily
biased.

These results show that as an approximation of the generalization error,JWLS is more
robust against the misspecification of models thanJOLS , which is in good agreement with
the theoretical analyses given in Section 3 and Section 4.
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Figure 1: Learning target function
and input density functions.

Table 1: The means and standard deviations of
the generalization error for Toy data set. The best
method and comparable ones by the t-test at the
significance level5% are described with boldface.
The value of method (B) forÆ = 0:5 is extremely
large but it is not a typo.Æ = 0 Æ = 0:04 Æ = 0:5
(A) 1:99� 0:07 2:02�0:07 5:94�0:80
(B) 1:34�0:04 3:27� 1:23 303� 197
(C) 2:60� 0:44 2:62� 0:43 6:87� 1:15

All values in the table are multiplied by103.Æ = 0 Æ = 0:04 Æ = 0:5
“correctly specified” “ approximately correct” “ misspecified”
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Figure 2: The means and error bars ofGWLS , JWLS , GOLS , andJOLS over100 runs as
functions of.
In Table 1, the mean and standard deviation of the generalization error obtained by each
method is described. WhenÆ = 0, the existing method (B) works better than the proposed
method (A). Actually, in this case, training input densities that approximately minimizeGWLS andGOLS were found byJWLS andJOLS . Therefore, the difference of the errors
is caused by the difference of WLS and OLS: WLS generally has larger variance than
OLS. Since bias is zero for both WLS and OLS ifÆ = 0, OLS would be more accurate
than WLS. Although the proposed method (A) is outperformed by the existing method (B),
it still works better than the passive learning scheme (C). WhenÆ = 0:04 andÆ = 0:5 the
proposed method (A) gives significantly smaller errors than other methods.

Overall, we found that for all three cases, the proposed method (A) works reasonably well
and outperforms the passive learning scheme (C). On the other hand, the existing method
(B) works excellently in the correctly specified case, although it tends to perform poorly
once the correctness of the model is violated. Therefore, the proposed method (A) is found
to be robust against the misspecification of models and thus it is reliable.



Table 2: The means and standard deviations of the test error for DELVE data sets. All
values in the table are multiplied by103.

Bank-8fm Bank-8fh Bank-8nm Bank-8nh
(A) 0:31�0:04 2:10�0:05 24:66�1:20 37:98� 1:11
(B) 0:44� 0:07 2:21� 0:09 27:67� 1:50 39:71� 1:38
(C) 0:35� 0:04 2:20� 0:06 26:34� 1:35 39:84� 1:35

Kin-8fm Kin-8fh Kin-8nm Kin-8nh
(A) 1:59� 0:07 5:90� 0:16 0:72�0:04 3:68� 0:09
(B) 1:49�0:06 5:63�0:13 0:85� 0:06 3:60� 0:09
(C) 1:70� 0:08 6:27� 0:24 0:81� 0:06 3:89� 0:14
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Figure 3: Mean relative performance of (A) and (B) compared with (C). For each run,
the test errors of (A) and (B) are normalized by the test error of (C), and then the values
are averaged over100 runs. Note that the error bars were reasonably small so they were
omitted.

Realistic Data Set: Here we use eight practical data sets provided by DELVE [4]:Bank-
8fm, Bank-8fh, Bank-8nm, Bank-8nh, Kin-8fm, Kin-8fh, Kin-8nm, andKin-8nh. Each data
set includes8192 samples, consisting of8-dimensional input and1-dimensional output
values. For convenience, every attribute is normalized into[0; 1℄.
Suppose we are given all8192 input points (i.e., unlabeled samples). Note that output
values are unknown. From the pool of unlabeled samples, we choosen = 1000 input
pointsfxig1000i=1 for training and observe the corresponding output valuesfyig1000i=1 . The
task is to predict the output values of all unlabeled samples.

In this experiment, the test input densitypt(x) is unknown. So we estimate it using the
independent Gaussian density.pt(x) = (2�b2MLE)� d2 exp ��kx� b�MLEk2=(2b2MLE)� ;
whereb�MLE andbMLE are the maximum likelihood estimates of the mean and standard
deviation obtained from all unlabeled samples. Letp = 50 and the basis functions be'i(x) = exp ��kx� tik2=2� for i = 1; 2; : : : ; 50;
whereftig50i=1 are template points randomly chosen from the pool of unlabeled samples.

We select the training input densitypx(x) from the independent Gaussian density with
meanb�MLE and standard deviationbMLE , where = 0:7; 0:75; 0:8; : : :; 2:4:
In this simulation, we can not create the training input points in an arbitrary location be-
cause we only have8192 samples. Therefore, we first create temporary input points fol-
lowing the determined training input density, and then choose the input points from the
pool of unlabeled samples that are closest to the temporary input points. For each data set,
we repeat this simulation100 times, by changing the template pointsftig50i=1 in each run.



The means and standard deviations of the test error over100 runs are described in Table 2.
The proposed method (A) outperforms the existing method (B) for five data sets, while it
is outperformed by (B) for the other three data sets. We conjecture that the model used
for learning is almost correct in these three data sets. This result implies that the proposed
method (A) is slightly better than the existing method (B).

Figure 3 depicts the relative performance of the proposed method (A) and the existing
method (B) compared with the passive learning scheme (C). This shows that (A) outper-
forms (C) for all eight data sets, while (B) is comparable or is outperformed by (C) for five
data sets. Therefore, the proposed method (A) is overall shown to work better than other
schemes.

6 Conclusions

We argued that active learning is essentially the situation under the covariate shift—the
training input density is different from the test input density. When the model used for
learning is correctly specified, the covariate shift does not matter. However, for misspeci-
fied models, we have to explicitly cope with the covariate shift. In this paper, we proposed
a new active learning method based on the weighted least-squares learning.

The numerical study showed that the existing method works better than the proposed
method if model is correctly specified. However, the existing method tends to perform
poorly once the correctness of the model is violated. On the other hand, the proposed
method overall worked reasonably well and it consistently outperformed the passive learn-
ing scheme. Therefore, the proposed method would be robust against the misspecification
of models and thus it is reliable.

The proposed method can be theoretically justified if the model is approximately correct
in a weak sense. However, it is no longer valid for totally misspecified models. A natural
future direction would be therefore to devise an active learning method which has theoret-
ical guarantee with totally misspecified models. It is also important to notice that when the
model is totally misspecified, even learning with optimal training input points would not
be successful anyway. In such cases, it is of course important to carry outmodel selection.
In active learning research—including the present paper, however, the location of train-
ing input points are designed for asinglemodel at hand. That is, the model should have
been chosenbeforeperforming active learning. Devising a method for simultaneously op-
timizing models and the location of training input points would be a more important and
promising future direction.
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