
Coarticulation in Markov Decision

Processes

Khashayar Rohanimanesh
Department of Computer Science

University of Massachusetts
Amherst, MA 01003
khash@cs.umass.edu

Robert Platt
Department of Computer Science

University of Massachusetts
Amherst, MA 01003
rplatt@cs.umass.edu

Sridhar Mahadevan
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

mahadeva@cs.umass.edu

Roderic Grupen
Department of Computer Science

University of Massachusetts
Amherst, MA 01003
grupen@cs.umass.edu

Abstract

We investigate an approach for simultaneously committing to mul-
tiple activities, each modeled as a temporally extended action in
a semi-Markov decision process (SMDP). For each activity we de-
fine a set of admissible solutions consisting of the redundant set of
optimal policies, and those policies that ascend the optimal state-
value function associated with them. A plan is then generated by
merging them in such a way that the solutions to the subordinate
activities are realized in the set of admissible solutions satisfying
the superior activities. We present our theoretical results and em-
pirically evaluate our approach in a simulated domain.

1 Introduction

Many real-world planning problems involve concurrent optimization of a set of prior-
itized subgoals of the problem by dynamically merging a set of (previously learned)
policies optimizing the subgoals. A familiar example of this type of problem would
be a driving task which may involve subgoals such as safely navigating the car, talk-
ing on the cell phone, and drinking coffee, with the first subgoal taking precedence
over the others. In general this is a challenging problem, since activities often have
conflicting objectives and compete for limited amount of resources in the system.
We refer to the behavior of an agent that simultaneously commits to multiple ob-
jectives as Coarticulation, inspired by the coarticulation phenomenon in speech.
In this paper we investigate a framework based on semi-Markov decision processes
(SMDPs) for studying this problem. We assume that the agent has access to a set
of learned activities modeled by a set of SMDP controllers ζ = {C1, C2, . . . , Cn} each
achieving a subgoal ωi from a set of subgoals Ω = {ω1, ω2, . . . , ωn}. We further
assume that the agent-environment interaction is an episodic task where at the be-

ginning of each episode a subset of subgoals ω ⊆ Ω are introduced to the agent,
where subgoals are ranked according to some priority ranking system. The agent
is to devise a global policy by merging the policies associated with the controllers
into a global policy that simultaneously commits to them according to their degree
of significance. In general optimal policies of controllers do not offer flexibility re-
quired for the merging process. Thus for every controller we also compute a set of
admissible suboptimal policies that reflect the degree of flexibility we can afford in
it. Given a controller, an admissible policy is either an optimal policy, or it is a pol-
icy that ascends the optimal state-value function associated with the controller (i.e.,
in average leads to states with higher values), and is not too off from the optimal
policy. To illustrate this idea, consider Figure 1(a) that shows a two dimensional

S
a

bc
d

C
CC1 2

S

ca b

(a) (b)

Figure 1: (a) actions a, b, and c are ascending on the state-value function associated
with the controller C, while action d is descending; (b) action a and c ascend the
state-value function C1 and C2 respectively, while they descend on the state-value
function of the other controller. However action b ascends the state-value function
of both controllers.

state-value function. Regions with darker colors represents states with higher val-
ues. Assume that the agent is currently in state marked s. The arrows show the
direction of state transition as a result of executing different actions, namely actions
a, b, c, and d. The first three actions lead the agent to states with higher values, in
other words they ascend the state-value function, while action d descends it. Fig-
ure 1(b) shows how introducing admissible policies enables simultaneously solving
multiple subgoals. In this figure, action a and c are optimal in controllers C1 and C2

respectively, but they both descend the state-value function of the other controller.
However if we allow actions such as action b, we are guaranteed to ascend both
value functions, with a slight degeneracy in optimality.
Most of the related work in the context of MDPs assume that the subprocesses
modeling the activities are additive utility independent [1, 2] and do not address
concurrent planning with temporal activities. In contrast we focus on problems that
involve temporal abstraction where the overall utility function may be expressed as
a non-linear function of sub-utility functions that have different priorities. Our ap-
proach is also similar in spirit to the redundancy utilization formalism in robotics
[4, 3, 6]. Most of these ideas, however, have been investigated in continuous domains
and have not been extended to discrete domains. In contrast we focus on discrete
domains modeled as MDPs.
In this paper we formally introduce the framework of redundant controllers in terms
of the set of admissible policies associated with them and present an algorithm for
merging such policies given a coarticulation task. We also present a set of theoreti-
cal results analyzing various properties of such controllers, and also the performance
of the policy merging algorithm. The theoretical results are complemented by an
experimental study that illustrates the trade-offs between the degree of flexibility
of controllers and the performance of the policy generated by the merging process.

2 Redundant Controllers

In this section we introduce the framework of redundant controllers and formally
define the set of admissible policies in them. For modeling controllers, we use
the concept of subgoal options [7]. A subgoal option can be viewed as a closed
loop controller that achieves a subgoal of some kind. Formally, a subgoal option
of an MDP M = 〈S,A,P,R〉 is defined by a tuple C = 〈MC , I, β〉. The MDP
MC = 〈SC ,AC ,PC ,RC〉 is the option MDP induced by the option C in which
SC ⊆ S, AC ⊆ A, PC is the transition probability function induced by P, and RC is
chosen to reflect the subgoal of the option. The policy component of such options
are the solutions to the option MDP MC associated with them. For generality,
throughout this paper we refer to subgoal options simply as controllers.
For theoretical reasons, in this paper we assume that each controller optimizes a
minimum cost-to-goal problem. An MDP M modeling a minimum cost-to-goal
problem includes a set of goal states SG ⊂ S. We also represent the set of non-goal
states by S̄G = S − SG . Every action in a non-goal state incurs some negative
reward and the agent receives a reward of zero in goal states. A controller C is a
minimum cost-to-goal controller, if MC optimizes a minimum cost-to-goal problem.
The controller also terminates with probability one in every goal state. We are
now ready to formally introduce the concept of ascending policies in an MDP:
Definition 1: Given an MDP M = 〈S,A,P,R〉, a function L : S → IR, and
a deterministic policy π : S → A, let ρπ(s) = E

s′∼P
π(s)
s

{L(s′)} − L(s), where

E
s′∼P

π(s)
s

{.} is the expectation with respect to the distribution over next states

given the current state and the policy π. Then π is ascending on L, if for every
state s (except for the goal states if the MDP models a minimum cost-to-goal
problem) we have ρπ(s) > 0.
For an ascending policy π on a function L, function ρ : S → IR+ gives a strictly
positive value that measures how much the policy π ascends on L in state s. A
deterministic policy π is descending on L, if for some state s, ρπ(s) < 0. In general
we would like to study how a given policy behaves with respect to the optimal
value function in a problem. Thus we choose the function L to be the optimal
state value function (i.e., V∗). The above condition can be interpreted as follows:
we are interested in policies that in average lead to states with higher values,
or in other words ascend the state-value function surface. Note that Definition
1 is closely related to the Lyapunov functions introduced in [5]. The minimum
and maximum rate at which an ascending policy in average ascends V∗ are given by:

Definition 2: Assume that the policy π is ascending on the optimal state value
function V∗. Then π ascends on V∗ with a factor at least α, if for all non-goal states
s ∈ S̄G , ρπ(s) ≥ α > 0. We also define the guaranteed expected ascend rate of π as:
κπ = mins∈S̄G

ρπ(s). The maximum possible achievable expected ascend rate of π

is also given by ηπ = maxs∈S̄G
ρπ(s).

One problem with ascending policies is that Definition 1 ignores the immediate re-
ward which the agent receives. For example it could be the case that as a result
of executing an ascending policy, the agent transitions to some state with a higher
value, but receives a huge negative reward. This can be counterbalanced by adding
a second condition that keeps the ascending policies close to the optimal policy:
Definition 3: Given a minimum cost-to-goal problem modeled by an MDP
M = 〈S,A,P,R〉, a deterministic policy π is ε-ascending on M if: (1) π is as-
cending on V∗, and (2) ε is the maximum value in the interval (0, 1] such that
∀s ∈ S we have Q∗(s, π(s)) ≥ 1

ε
V∗(s).

Here, ε measures how close the ascending policy π is to the optimal policy. For any
ε, the second condition assures that: ∀s ∈ S,Q∗(s, π(s)) ∈ [1

ε
V∗(s),V∗(s)] (note

that because M models a minimum cost-to-goal problem, all values are negative).
Naturally we often prefer policies that are ε-ascending for ε values close to 1. In
section 3 we derive a lower bound on ε such that no policy for values smaller than
this bound is ascending on V∗ (in other words ε cannot be arbitrarily small). Simi-
larly, a deterministic policy π is called ε-ascending on C, if π is ε-ascending on MC .
Next, we introduce the framework of redundant controllers:
Definition 4: A minimum cost-to-goal controller C is an ε-redundant controller if
there exist multiple deterministic policies that are either optimal, or ε-ascending
on C. We represent the set of such admissible policies by χε

C . Also, the minimum
ascend rate of C is defined as: κ̄ = minπ∈χε

C
κπ, where κπ is the ascend rate of a

policy π ∈ χε
C (see Definition 2).

We can compute the ε-redundant set of policies for a controller C as follows. Using
the reward model, state transition model, V∗ and Q∗, in every state s ∈ S, we
compute the set of actions that are ε-ascending on C represented by Aε

C(s) = {a ∈
A|a = π(s), π ∈ χε

C}, that satisfy both conditions of Definition 2.
Next, we present an algorithm for merging policies associated with a set of priori-
tized redundant controllers that run in parallel. For specifying the order of priority
relation among the controllers we use the expression Cj / Ci, where the relation
“/” expresses the subject-to relation (taken from [3]). This equation should read:
controller Cj subject-to controller Ci. A priority ranking system is then specified
by a set of relations {Cj / Ci}. Without loss of generality we assume that the
controllers are prioritized based on the following ranking system: {Cj / Ci |i < j}.
Algorithm MergeController summarizes the policy merging process. In this algo-

Algorithm 1 Function MergeController(s, C1, C3, . . . , Cm)

1: Input: current state s; the set of controllers Ci; the redundant-sets Aεi

Ci
(s) for

every controller Ci.
2: Initialize: Λ1(s) = Aε1

C1
(s).

3: For i = 2, 3, . . . , n perform:
Λi(s) = {a |a ∈ Aεi

Ci
(s) ∧ a ∈ Λf(i)(s)} where f(i) = max j <

i such that Λj(s) 6= ∅ (initially f(1) = 1).
4: Return an action a ∈ Λf(n+1)(s).

rithm, Λi(s) represents the ordered intersection of the redundant-sets A
εj

Cj
up to

the controller Ci (i.e., 1 ≤ j ≤ i) constrained by the order of priority. In other
words, each set Λi(s) contains a set of actions in state s that are all εi-ascending
with respect to the superior controllers C1, C2, . . . , Ci. Due to the limited amount of
redundancy in the system, it is possible that the system may not be able to commit
to some of the subordinate controllers. This happens when none of the actions
with respect to some controller Cj (i.e., a ∈ A

εj

Cj
(s)) are ε-ascending with respect

to the superior controllers. In this case the algorithm skips the controller Cj , and
continues the search in the redundant-sets of the remaining subordinate controllers.
The complexity of the above algorithm consists of the following costs: (1) cost of
computing the redundant-sets Aεi

Ci
for a controller which is linear in the number of

states and actions: O(|S| |A|), (2) cost of performing Algorithm MergeController in
every state s, which is O((m− 1) |A|2), where m is the number of subgoals. In the
next section, we theoretically analyze redundant controllers and the performance of
the policy merging algorithm in various situations.

3 Theoretical Results

In this section we present some of our theoretical results characterizing ε-redundant
controllers, in terms of the bounds on the number of time steps it takes for a con-
troller to complete its task, and the performance of the policy merging algorithm.
For lack of space, we have left out the proofs and refer the readers to [8]. In section
2 we stated that there is a lower bound on ε such that there exist no ε-ascending
policy for values smaller than this bound. In the first theorem we compute this
lower bound:
Theorem 1 Let M = 〈S,A,P,R〉 be a minimum cost-to-goal MDP and let π

be an ε-ascending policy defined on M. Then ε is bounded by ε >
|V∗

max|
|V∗

min
| , where

V∗
min = mins∈S̄G

V∗(s) and V∗
max = maxs∈S̄G

V∗(s).
Such a lower bound characterizes the maximum flexibility we can afford in a redun-
dant controller and gives us an insight on the range of ε values that we can choose
for it. In the second theorem we derive an upper bound on the expected number of
steps that a minimum cost-to-goal controller takes to complete when executing an
ε-ascending policy:
Theorem 2 Let C be an ε-ascending minimum cost-to-goal controller and let s
denote the current state of the controller. Then any ε-ascending policy π on C will
terminate the controller in some goal state with probability one. Furthermore, ter-

mination occurs in average in at most d−V∗(s)
κπ e steps, where κπ is the guaranteed

expected ascend rate of the policy π.
This result assures that the controller arrives in a goal state and will achieve its
goal in a bounded number of steps. We use this result when studying performance
of running multiple redundant controllers in parallel. Next, we study how con-
current execution of two controllers using Algorithm MergeController impacts each
controller (this result can be trivially extended to the case when a set of m > 2
controllers are executed concurrently):
Theorem 3 Given an MDP M = 〈S,A,P,R〉, and any two minimum cost-to-goal
redundant controllers {C1, C2} defined over M, the policy π obtained by Algorithm
MergeController based on the ranking system {C2 / C1} is ε1-ascending on C1(s).
Moreover, if ∀s ∈ S,Aε1

C1
(s) ∩ Aε2

C2
(s) 6= ∅, policy π will be ascending on both con-

trollers with the ascend rate at least κπ = min{κπ1 , κπ2}.
This theorem states that merging policies of two controllers using Algorithm Merge-
Controller would generate a policy that remains ε1-ascending on the superior con-
troller. In other words it does not negatively impact the superior controller. In the
next theorem, we establish bounds on the expected number of steps that it takes
for the policy obtained by Algorithm MergeController to achieve a set of prioritized
subgoals ω = {ω1, . . . , ωm} by concurrently executing the associated controllers
{C1, . . . , Cm}:
Theorem 4 Assume ζ = {C1, C2, . . . , Cm} is a set of minimum cost-to-goal εi-
redundant (i = 1, . . . ,m) controllers defined over MDP M. Let the policy π denote
the policy obtained by Algorithm MergeController based on the ranking system
{Cj / Ci|i < j}. Let µζ(s) denote the expected number of steps for the policy π for
achieving all the subgoals {ω1, ω2, . . . , ωm} associated with the set of controllers,
assuming that the current state of the system is s. Then the following expression
holds:

max
i

d
−V∗

i (s)

ηπ
i

e ≤ µζ(s) ≤
∑

h∈H

P(h)

m∑

i=1

d
−V∗

i (h(i))

κ̄i

e (1)

where ηπ
i is the maximum possible achievable expected ascend rate for the controller

Ci (see Definition 2), H is the set of sequences h = 〈s, g1, g2, . . . , gm〉 in which
gi is a goal state in controller Ci (i.e., gi ∈ SGi

). The probability distribution

P(h) = PC1
sg1

∏m
i=2 P

Ci
gi−1gi

over sequences h ∈ H gives the probability of executing
the set of controllers in sequence based on the order of priority starting in state s,
and observing the goal state sequence 〈g1, . . . , gm〉.
Based on Theorem 3, when Algorithm MergeController always finds a policy π that
optimizes all controllers (i.e., ∀s ∈ S,∩m

i=1A
εi

Ci
(s) 6= ∅), policy π will ascend on all

controllers. Thus in average the total time for all controllers to terminate equals the
time required for a controller that takes the most time to complete which has the

lower bound of maxid
−V∗

i (s)
ηπ(s) e. The worst case happens when the policy π generated

by Algorithm MergeController can not optimize more than one controller at a time.
In this case π always optimizes the controller with the highest priority until its
termination, then optimizes the second highest priority controller and continues this
process to the end in a sequential manner. The right hand side of the inequality
given by Equation 1 gives an upper bound for the expected time required for all
controllers to complete when they are executed sequentially. The above theorem
implicitly states that when Algorithm MergeController generates a policy that in
average commits to more than one subgoal it potentially takes less number of steps
to achieve all the subgoals, compared to a policy that sequentially achieves them
according to their degree of significance.

4 Experiments

In this section we present our experimental results analyzing redundant controllers
and the policy merging algorithm described in section 2. Figure 2(a) shows a
10 × 10 grid world where an agent is to visit a set of prioritized locations marked
by G1, . . . , Gm (in this example m = 4). The agent’s goal is to achieve all of the
subgoals by focusing on superior subgoals and coarticulating with the subordinate
ones. Intuitively, when the agent is navigating to some subgoal Gi of higher priority,
if some subgoal of lower priority Gj is en route to Gi, or not too off from the optimal
path to Gi, the agent may choose to visit Gj . We model this problem by an MDP

G

G

G
G

1

2

3

4

G1 G1 G1

(a) (b) (c) (d)

Figure 2: (a) A 10 × 10 grid world where an agent is to visit a set of prioritized
subgoal locations; (b) The optimal policy associated with the subgoal G1; (c) The
ε-ascending policy for ε = 0.95; (d) The ε-ascending policy for ε = 0.90.

M = 〈S,A,R,P〉, where S is the set of states consisting of 100 locations in the
room, and A is the set of actions consisting of eight stochastic navigation actions
(four actions in the compass direction, and four diagonal actions). Each action
moves the agent in the corresponding direction with probability p and fails with
probability (1 − p) (in all of the experiments we used success probability p = 0.9).
Upon failure the agent is randomly placed in one of the eight-neighboring locations
with equal probability. If a movement would take the agent into a wall, then the
agent will remain in the same location. The agent also receives a reward of −1 for
every action executed. We assume that the gent has access to a set of controllers
C1, . . . , Cm, associated with the set of subgoal locations G1, . . . , Gm. A controller Ci

is a minimum cost-to-goal subgoal option Ci = 〈MCi
, I, β〉, where MCi

= M, the

initiation set I includes any locations except for the subgoal location, and β forces
the option to terminate only in the subgoal location. Figures 2(b)-(d) show exam-
ples of admissible policies for subgoal G1: Figure 2(b) shows the optimal policy of
the controller C1 (navigating the agent to the location G1). Figures 2(c) and 2(d)
show the ε-redundant policies for ε = 0.95 and ε = 0.90 respectively. Note that by
reducing ε, we obtain a larger set of admissible policies although less optimal.
We use two different planning methods: (1) sequential planning, where we achieve
the subgoals sequentially by executing the controllers one at a time according to
the order of priority of subgoals, (2) concurrent planning, where we use Algorithm
MergeController for merging the policies associated with the controllers. In the
first set of experiments, we fix the number of subgoals. At the beginning of each
episode the agent is placed in a random location, and a fixed number of subgoals
(in our experiments m = 4) are randomly selected. Next, the set of admissible
policies (using ε = 0.9) for every subgoal is computed. Figure 3(a) shows the per-
formance of both planning methods, for every starting location in terms of number
of steps for completing the overall task. The concurrent planning method consis-
tently outperforms the sequential planning in all starting locations. Next, for the

16

18

20

22

24

26

28

30

0 20 40 60 80 100

A
ve

ra
ge

 (
st

ep
s)

State

Concurrent
Sequential

19

20

21

22

23

24

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

A
ve

ra
ge

 (
st

ep
s)

Epsilon

Concurrent

(a) (b)

Figure 3: (a) Performance of both planning methods in terms of the average number
of steps in every starting state; (b) Performance of the concurrent method for
different values of ε.

same task, we measure how the performance of the concurrent method varies by
varying ε, when computing the set of ε-ascending policies for every subgoal. Figure
3(b) shows the performance of the concurrent method and Figure 4(a) shows the
average number of subgoals coarticulated by the agent – averaged over all states
– for different values of ε. We varied ε from 0.6 to 1.0 using 0.05 intervals. All of
these results are also averaged over 100 episodes, each consisting of 10 trials. Note
that for ε = 1, the only admissible policy is the optimal policy and thus it does
not offer much flexibility with respect to the other subgoals. This can be seen in
Figure 3(b) in which the policy generated by the merging algorithm for ε = 1.0
has the minimum commitment to the other subgoals. As we reduce ε, we obtain a
larger set of admissible policies, thus we observe improvement in the performance.
However, the more we reduce ε, the less optimal admissible policies we obtain. Thus
the performance degrades (here we can observe it for the values below ε = 0.85).
Figure 4(a) also shows by relaxing optimality (reducing ε), the policy generated by
the merging algorithm commits to more subgoals simultaneously.
In the final set of experiments, we fixed ε to 0.9 and varied the number of sub-

goals from m = 2 to m = 50 (all of these results are averaged over 100 episodes,
each consisting of 10 trials). Figure 4(b) shows the performance of both planning
methods. It can be observed that the concurrent method consistently outperforms
the sequential method by increasing the number of subgoals (top curve shows the
performance of the sequential method and bottom curve shows that of concurrent
method). This is because when there are many subgoals, the concurrent planning

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r

of
 s

ub
go

al
s

co
m

m
itt

ed

Epsilon

Concurrent

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 (
st

ep
s)

Number of subgoals

Concurrent
Sequential

(a) (b)

Figure 4: (a) Average number of subgoals coarticulated using the concurrent plan-
ning method for different values of ε; (b) Performance of the planning methods in
terms of the average number of steps in every starting state.

method is able to visit multiple subgoals of lower priority en route the primary
subgoals, thus it can save more time.

5 Concluding Remarks

There are a number of questions and open issues that remain to be addressed and
many interesting directions in which this work can be extended. In many problems,
the strict order of priority of subtasks may be violated: in some situations we may
want to be sub-optimal with respect to the superior subtasks in order to improve
the overall performance. One other interesting direction is to study situations when
actions are structured. We are currently investigating compact representation of
the set of admissible policies by exploiting the structure of actions.

Acknowledgements

This research is supported in part by a grant from the National Science Foundation
#ECS-0218125.

References

[1] C. Boutilier, R. Brafman, and C. Geib. Prioritized goal decomposition of Markov decision processes:
Towards a synthesis of classical and decision theoretic planning. In Martha Pollack, editor, Proceed-
ings of the Fifteenth International Joint Conference on Artificial Intelligence, pages 1156–1163,
San Francisco, 1997. Morgan Kaufmann.

[2] C. Guestrin and G. Gordon. Distributed planning in hierarchical factored mdps. In In the Pro-
ceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pages 197 – 206,
Edmonton, Canada, 2002.

[3] M. Huber. A Hybrid Architecture for Adaptive Robot Control. PhD thesis, University of Mas-
sachusetts, Amherst, 2000.

[4] Y. Nakamura. Advanced robotics: redundancy and optimization. Addison-Wesley Pub. Co., 1991.

[5] Theodore J. Perkins and Andrew G. Barto. Lyapunov-constrained action sets for reinforcement learn-
ing. In Proc. 18th International Conf. on Machine Learning, pages 409–416. Morgan Kaufmann,
San Francisco, CA, 2001.

[6] R. Platt, A. Fagg, and R. Grupen. Nullspace composition of control laws for grasping. In the Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2002.

[7] D. Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, Department of Computer
Science, University of Massachusetts, Amherst., 2000.

[8] K. Rohanimanesh, R. Platt, S. Mahadevan, and R. Grupen. A framework for coarticulation in
markov decision processes. Technical Report 04-33, (www.cs.umass.edu/~khash/coarticulation04.
pdf), Department of Computer Science, University of Massachusetts, Amherst, Massachusetts, USA.,
2004.

