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Abstract

We formulate the problem of graph inference where part of the graph is
known as a supervised learning problem, and propose an algorithm to
solve it. The method involves the learning of a mapping of the vertices
to a Euclidean space where the graph is easy to infer, and can be formu-
lated as an optimization problem in a reproducing kernel Hilbert space.
We report encouraging results on the problem of metabolic network re-
construction from genomic data.

1 Introduction

The problem of graph inference, or graph reconstruction, is to predict the presence or ab-
sence of edges between a set of points known to form the vertices of a graph, the prediction
being based on observations about the points. This problem has recently drawn a lot of at-
tention in computational biology, where the reconstruction of various biological networks,
such as gene or molecular networks from genomic data, is a core prerequisite to the re-
cent field of systems biology that aims at investigating the structures and properties of such
networks. As an example, thein silico reconstruction of protein interaction networks [1],
gene regulatory networks [2] or metabolic networks [3] from large-scale data generated by
high-throughput technologies, including genome sequencing or microarrays, is one of the
main challenges of current systems biology.

Various approaches have been proposed to solve the network inference problem. Bayesian
[2] or Petri networks [4] are popular frameworks to model the gene regulatory or the
metabolic network, and include methods to infer the network from data such as gene ex-
pression of metabolite concentrations [2]. In other cases, such as inferring protein inter-
actions from gene sequences or gene expression, these models are less relevant and more
direct approaches involving the prediction of edges between “similar” nodes have been
tested [5, 6].

These approaches are unsupervised, in the sense that they base their prediction on prior
knowledge about which edges should be present for a given set of points; this prior knowl-
edge might for example be based on a model of conditional independence in the case of
Bayesian networks, or on the assumption that edges should connect similar points. The
actual situations we are confronted with, however, can often be expressed in a supervised
framework: besides the data about the vertices, part of the network is already known. This



is obviously the case with all network examples discussed above, and the real challenge
is to denoise the observed subgraph, if errors are assumed to be present, and to infer new
edges involving in particular nodes outside of the observed subgraph. In order to clarify
this point, let us take the example of an actual network inference problem that we treat
in the experiment below: the inference of the metabolic network from various genomic
data. The metabolic network is a graph of genes that involves only a subset of all the
genes of an organisms, known as enzymes. Enzymes can catalyze chemical reaction, and
an edge between two enzymes indicates that they can catalyze two successive reactions.
For most organisms, this graph is partially known, because many enzymes have already
been characterized. However many enzymes are also missing, and the problem is to detect
uncharacterized enzymes and place them in their correct location in the metabolic network.
Mathematically speaking, this means adding new edges involving new points, and eventu-
ally modifying edges in the known graph to remove mistakes from our current knowledge.

In this contribution we propose an algorithm for supervised graph inference, i.e., to infer
a graph from observations about the vertices and from the knowledge of part of the graph.
Several attempts have already been made to formalize the network inference problem as a
supervised machine learning problem [1, 7], but these attempts consist in predicting each
edge independently from each others using algorithms for supervised classification. We
propose below a radically different setting, where the known subgraph is used to extract a
new representation for the vertices, as points in a vector space, where the structure of the
graph is easier to infer than from the original observations. The edge inference engine in the
vector space is very simple (edges are inferred between nodes with similar representations),
and the learning step is limited to the construction of the mapping of the nodes onto the
vector space.

2 The supervised graph inference problem

Let us formally define the supervised graph inference problem. We suppose an undirected
simple graphG = (V,E) is given, whereV = (v1, . . . , vn) ∈ Vn is a set of vertices and
E ⊂ V × V is a set of edges. The problem is, given an additional set of verticesV ′ =
(v′1, . . . , v

′
m) ∈ Vm, to infer a set of edgesE′ ⊂ V ′× (V ∪V ′)∪ (V ∪V ′)×V ′ involving

the nodes inV ′. In many situations of interest, in particular gene networks, the additional
nodesV ′ might be known in advance, but we do not make this assumption here to ensure
a level of generality as large as possible. For the applications we have in mind, the vertices
can be represented inV by a variety of data types, including but not limited to biological
sequences, molecular structures, expression profiles or metabolite concentrations. In order
to allow this diversity and take advantage of recent works on positive definite kernels on
general sets [8], we will assume thatV is a set endowed with a positive definite kernelk,
that is, a symmetric functionk : V2 → R satisfying

∑p
i,j=1 aiajk(xi, xj) ≥ 0 for any

p ∈ N, (a1, . . . , an) ∈ Rp and(x1, . . . , xp) ∈ Vp.

3 From distance learning to graph inference

Suppose first that a graph must be inferred onp points(x1, . . . , xp) in the Euclidean space
Rd, without further information than “similar points” should be connected. Then the sim-
plest strategy to predict edges between the points is to put an edge between vertices that
are at a distance from each other smaller than a fixed thresholdδ. More or less edges can
be inferred by varying the threshold. We call this strategy the “direct” strategy. We now
propose to cast the supervised graph inference problem in a two step procedure:

• map the original points to a Euclidean space through a mappingf : V → Rd;

• apply the direct strategy to infer the network on the points{f(v), v ∈ V ∪ V ′} .



While the second part of this procedure is fixed, the first part can be optimized by super-
visedlearning off using the known network. To do so we require the mappingf to map
adjacent vertices in the known graph to nearby positions inRd, in order to ensure that the
known graph can be recovered to some extent by the direct strategy. Stated this way, the
problem of learningf appears similar to a problem of distance learning that has been raised
in the context of clustering [9], a important difference being that we need to define a new
representation of the points and therefore a new (Euclidean) distance not only for the points
in the training set, but also for points unknown during training.

Given a functionf : V → R, a possible criterion to assess whether connected (resp. dis-
connected) vertices are mapped onto similar (resp. dissimilar) points inR is the following:

R(f) =

∑
(u,v)∈E (f(u)− f(v))2 −

∑
(u,v)6∈E (f(u)− f(v))2∑

(u,v)∈V 2 (f(u)− f(v))2
. (1)

A small value ofR(f) ensures that connected vertices tend to be closer than disconnected
vertices (in a quadratic error sense). Observe that the numerator ensures an invariance of
R(f) with respect to a scaling off by a constant, which is consistent with the fact that the
direct strategy itself is invariant with respect to scaling of the points.

Let us denote byfV = (f(v1), . . . , f(vn))> ∈ Rn the values taken byf on the training
set, and byL the combinatorial Laplacian of the graphG, i.e., then× n matrix whereLi,j

is equal to−1 (resp.0) if i 6= j and verticesvi andvj are connected (resp. disconnected),
andLi,i = −

∑
j 6=i Li,j . If we restrictfV to have zero mean (

∑
v∈V f(v) = 0), then the

criterion (1) can be rewritten as follows:

R(f) = 4
f>V LfV

f>V fV
− 2.

The obvious minimum ofR(f) under the constraint
∑

v∈V f(v) = 0 is reached for any
functionf such thatfV is equal to the second largest eigenvector ofL (the largest eigen-
vector ofL begin the constant vector). However, this only defines the values off on the
pointsV , but leaves indeterminacy on the values off outside ofV . Moreover, any arbi-
trary choice off under a single constraint onfV is likely to be a mapping that overfits
the known graph at the expense of the capacity to infer the unknown edges. To overcome
both issues, we propose to regularize the criterion (1), by a smoothness functional onf ,
a classical approach in statistical learning [10, 11]. A convenient setting is to assume that
f belongs to the reproducing kernel Hilbert space (r.k.h.s.)H defined by the kernelk on
V, and to use the norm off in the r.k.h.s. as a regularization operator. The regularized
criterion to be minimized becomes:

min
f∈H0

{
f>V LfV + λ||f ||2H

f>V fV

}
, (2)

whereH0 = {f ∈ H :
∑

v∈V f(v) = 0} is the subset ofH orthogonal to the function
x 7→

∑
v∈V k(x, v) in H andλ is a regularization parameter.

We note that [12] have recently and indenpendently proposed a similar formulation in the
context of clustering. The regularization parameter controls the trade-off between minimiz-
ing the original criterion (1) and ensuring that the solution has a small norm in the r.k.h.s.
Whenλ varies, the solution to (2) varies between to extremes:

• Whenλ is small,fV tends to the second largest eigenvector of the LaplacianL.
The regularization ensures thatf is well defined as a function ofV → R, butf is
likely to overfit the known graph.



• Whenλ is large, the solution to (2) converges to the first kernel principal compo-
nent (up to a scaling) [13], whatever the graph. Even though no supervised learn-
ing is performed in this case, one can observe that the resulting transformation,
when the firstd kernel principal components are kept, is similar to the operation
performed in spectral clustering [14, 15] where points are mapped onto the first
few eigenvectors of a similarity matrix before being clustered.

Before showing how (2) is solved in practice, we must complete the picture by explaining
how the mappingf : V → Rd is obtained. First note that the criterion in (2) is defined up
to a scaling of the functions, and the solution is therefore a direction in the r.k.h.s. In order
to extract a function, an additional constraint must be set, such that imposing the norm
||f ||HV

= 1, or imposing
∑

v∈V f(v)2 = 1. The first solution correspond to an orthogonal
projection onto the direction selected in the r.k.h.s. (which would for example give the same
result as kernel PCA for largeλ), while the second solution would provide a sphering of the
data. We tested both possibilities in practice and found very little difference, with however
slightly better results for the first solution (imposing||f ||HV

= 1). Second, the problem (2)
only defines a one-dimensional feature. In order to get ad-dimensional representation of
the vertices, we propose to iterate the minimization of (2) under orthogonality constraints
in the r.k.h.s., that is, we recursively define thei-th featurefi for i = 1, . . . , d by:

fi = arg min
f∈H0,f⊥{f1,...,fi−1}

{
f>V LfV + λ||f ||2H

f>V fV

}
. (3)

4 Implementation

Let kV be the kernel obtained by centeringk on the setV , i.e.,

kV (x, y) = k(x, y)− 1
n

∑
v∈V

k(x, v)− 1
n

∑
v∈V

k(y, v) +
1
n2

∑
(v,v′)∈V 2

k(v, v′),

and letHV be the r.k.h.s. associated withkV . Then it can easily be checked thatHV = H0,
whereH0 is defined in the previous section as the subset ofH of the function with zero
mean onV . A simple extensions of the representer theorem [10] in the r.k.h.s.HV shows
that for anyi = 1, . . . , d, the solution to (3) has an expansion of the form:

fi(x) =
n∑

j=1

αi,jkV (xj , x),

for some vectorαi = (αi,1, . . . , αi,n)> ∈ Rn. The corresponding vectorfi,V can be
written in terms ofαi by fi,V = KV αi, whereKV is the Gram matrix of the kernelkV

on the setV , i.e., [KV ]i,j = kV (vi, vj) for i, j = 1, . . . , n. KV is obtained from the Gram
matrix K of the original kernelk by the classical formulaKV = (I − U)K(I − U), I
being then × n identity matrix andU being the constantn × n matrix [U ]i,j = 1/n for
i, j = 1, . . . , n [13]. Besides, the norm inHV is equal to||fi||2HV

= α>i KV αi, and the
orthogonality constraint betweenfi andfj in HV translates intoα>i KV αj = 0. As a
result, the problem (2) is equivalent to the following:

αi = arg min
α∈Rn,αKV α1=...=αKV αi−1=0

{
α>KV LKV α + λα>KV α

α>K2
V α

}
. (4)

Taking the differential of (4) with respect toα to 0 we see that the first vectorα1 must solve
the following generalized eigenvector problem with the smallest (non-negative) generalized
eigenvalue:

(KV LKV + λKV ) α = µK2
V α. (5)



This shows thatα1 mustsolve the following problem:

(LKV + λI)α = µKV α, (6)

up to the addition of a vectorε satisfyingKε = 0. Hence any solution of (5) differs from
a solution of (6) by such anε, which however does not change the corresponding function
f ∈ HV . It is therefore enough to solve (6) in order to find the first vectorα1. K being
positive semidefinite, the other generalized eigenvectors of (6) are conjugate with respect
to KV , so it can easily be checked that thed vectorsα1, . . . , αd solving (4) are in fact thed
smallest generalized eigenvectors or (6). In practice, for largen, the generalized eigenvec-
tor problem (6) can be solved by first performing an incomplete Cholesky decomposition
of KV , see e.g. [16].
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(c) Test vs test

Figure1: ROC score for different numbers of features and regularization parameters, in a
5-fold cross-validation experiment with the integrated kernel (the color scale is adjusted to
highlight the variations inside each figure, the performance increases from blue to red).

5 Experiment

We tested the supervised graph inference method described in the previous section on the
problem of inferring a gene network of interest in computational biology: the metabolic
gene network, with enzymes present in an organism as vertices, and edges between two en-
zymes when they can catalyze successive chemical reactions [17]. Focusing on the budding



yeastS.cerevisiae, the network corresponding to our current knowledge of the network was
extracted from the KEGG database [18]. The resulting network contains 769 vertices and
7404 edges. In order to infer it, various independent data about the genes can be used.
We focus on three sources of data, likely to contain useful information to infer the graph:
a set of 157 gene expression measurement obtained from DNA microarrays [19, 20], the
phylogenetic profiles of the genes [21] as vectors of 145 bits indicating the presence or
absence of each gene in 145 fully sequenced genomes, and their localization in the cell
determined experimentally [22] as vectors of 23 bits indicating the presence of each gene
into each of 23 compartment of the cell. In each case a Gaussian RBF kernel was used to
represent the data as a kernel matrix. We denote these three datasets as “exp”, “phy” and
“loc” below. Additionally, we considered a fourth kernel obtained by summing the first
three kernels. This is a simple approach to data integration that has proved to be useful in
[23], for example. This integrated kernel is denoted “int” below.

We performed 5-fold cross-validation experiments as follows. For each random split of
the set of genes into 80% (training set) and 20% (test set), the features are learned from
the subgraph with genes from the training set as vertices. The edges involving genes in
the test set are then predicted among all possible interactions involving the test set. The
performance of the inference is estimated in term of ROC curves (the plot of the percentage
of actual edges predicted as a function of the number of edges predicted although they are
not present), and in terms of the area under the ROC curve normalized between 0 and 1.
Notice that the set of possible interactions to be predicted is made of interactions between
two genes in the test set, on the one hand, and between one gene in the test set and one gene
in the training set, on the other hand. As it might be more challenging to infer an edge in
the former case, we compute two performances: first on the edges involving two nodes in
the test set, and second on the edges involving at least one vertex in the test set.

The algorithm contains 2 free parameters: the numberd of features to be kept, and the
regularization parameterλ that prevents from overfitting the known graph. We variedλ
among the values2i, for i = −5, . . . , 8, andd between 1 and 100. Figure 1 displays the
performance in terms of ROC index for the graph inference with the integrated kernel, for
different values ofd andλ. On the training set, it can be seen that the effect of increasing
λ constantly decreases the performance of the graph reconstruction, which is natural since
smaller values ofλ are expected to overfit the training graph. These results however justify
that the criterion (1), although not directly related to the ROC index of the graph recon-
struction procedure, is a useful criterion to be optimized. As an example, for very small
values ofλ, the ROC index on the training set is above 96%. The results on the test vs. test
and on the test vs. (train + test) experiments show that overfitting indeed occurs for small
λ values, and that there is an optimum, both in terms ofd andλ. The slight difference
between the performance landscapes in the experiments “test vs. test” and “test vs. (train
+ test)” show that the first one is indeed more difficult that the latter one, where some form
of overfitting is likely to occur (in the mapping of the vertices in the training set). In par-
ticular the “test vs. test” seems to be more sensitive to the number of features selected that
the other setting. The abolute values of the ROC scures when 20 features are selected, for
varyingλ, are shown in figure 2. For all kernels tested, overfitting occurs at smallλ values,
and an optimum exists (aroundλ = 2 ∼ 10). The performance in the setting “test vs.
(train+test)” is consistently better than that in the setting “test vs. test”. Finally, and more
interestingly, the inference with the integrated kernel outperforms the inference with each
individual kernel. This is further highlighted in figure 3, where the ROC curves obtained
for 20 features andλ = 2 are shown.
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