
Nonlinear Filtering of Electron

Micrographs by Means of Support Vector

Regression

R. Vollgraf1, M. Scholz1, I. A. Meinertzhagen2, K. Obermayer1

1Department of Electrical Engineering and Computer Science
Berlin University of Technology, Germany
{vro,idefix,oby}@cs.tu-berlin.de
2Dalhousie University, Halifax, Canada

iam@is.dal.ca

Abstract

Nonlinear filtering can solve very complex problems, but typically
involve very time consuming calculations. Here we show that for
filters that are constructed as a RBF network with Gaussian basis
functions, a decomposition into linear filters exists, which can be
computed efficiently in the frequency domain, yielding dramatic
improvement in speed. We present an application of this idea to
image processing. In electron micrograph images of photoreceptor
terminals of the fruit fly, Drosophila, synaptic vesicles containing
neurotransmitter should be detected and labeled automatically. We
use hand labels, provided by human experts, to learn a RBF filter
using Support Vector Regression with Gaussian kernels. We will
show that the resulting nonlinear filter solves the task to a degree of
accuracy, which is close to what can be achieved by human experts.
This allows the very time consuming task of data evaluation to be
done efficiently.

1 Introduction

Using filters for image processing can be understood as a supervised learning method
for classification and segmentation of certain image elements. A given training im-
age would contain a target that should be approximated by some filter at every
location. In principle, any kind of machine-learning techniques could be employed
to learn the mapping from the input receptive field of the filter to the target value.
The most simple filter is linear mapping. It has the advantage that it can be very
efficiently computed in the frequency domain. However linear filters may not be
complex enough for difficult problems. The complexity of nonlinear filters is in
principle unlimited (if we leave generalization issues aside), but the computation
of the filter output can be very time consuming, since usually there is no shortcut
in the frequency domain, as for linear filters. However, for nonlinear filters, that
are linear superpositions of Gaussian radial basis functions, there exists a decom-
position into linear filters, allowing the filter output to be computed in reasonable

time. This sort of nonlinear filtering is for example obtained, when Support Vector
Machines (SVM) with a Gaussian kernel are used for learning. SVM have proved to
yield good performance on many applications [1]. This and the ability to compute
the filter output in an affordable time, make SVM interesting for nonlinear filtering
in image processing tasks. Here we apply this new method to the evaluation of elec-
tron micrograph images taken from the visual system of the fruit fly, Drosophila, as
a means to analyze morphological phenotypes of new genetic mutants. Genetically
manipulable organisms such as Drosophila provide means to address many current
questions in neuroscience. The action, even of lethal genes, can be uncovered in
photoreceptors by creating homozygous whole-eye mosaics in heterozygous flies [2].
Mutant synaptic phenotypes are then interpretable from detailed ultra-structural
knowledge of the photoreceptor terminals R1-R6 in the lamina [3]. Electron mi-
croscopy (EM) alone offers the resolution required to analyze sub-cellular structure,
even though this technique is tedious to undertake. In Drosophila genetics hundreds
of mutants of the visual system have been isolated, many even from a single genetic
screen. The task of analyzing each of these mutants manually is simply not feasible,
hence reliable automatic (computer assisted) methods are needed. The focus here
is just to count the number of synaptic vesicles, but in general the method proposed
in this report could be extended to the analysis of other structures as well.

As representative datasets showing the feasibility of the proposed method, we have
chosen two datasets from wild type Drosophila (ter01 for training and ter04 for
performance evaluation, cf. Fig. 1) and one from a visual system mutant (mutant,
also for performance evaluation, cf. Fig. 2, left).

2 Learning the RBF Filter

Given an image x, we want to find a RBF filter with Gaussian basis functions, the
output of which is closest to a target image y, in terms of some suitable distance
measure. The filter is constrained to some receptive field P , so that its output at
position r would be formulated in the most general form as

z(r) = fRBF (x(r)) = fRBF

(

(x(r + ∆r1), . . . , x(r + ∆rM))
T
)

,

where P = {∆r1, . . . , ∆rM} is the neighborhood that forms the receptive field.
In the following we will continue using bold faced symbols to indicate a vector
containing the neighborhood (patch) at some location, while light faces indicate the
value of the image itself. Individual elements of patches are addressed by a subscript,
for example x∆r(r) = x(r+∆r). fRBF is a RBF network with M input dimensions.
It can be implemented as a feed forward net with a single hidden layer containing a
fixed number of RBF units and a linear output layer [4]. However we would rather
use the technique of Support Vector Regression (SVR) [5] as it has a number of
advantages over RBF feed forward networks. It offers adjustable model complexity
depending on the training data, thus providing good generalization performance.
The training of SVR is a quadratic, constrained optimization problem, which can
be solved efficiently without being trapped into local minima. In the linear case the
formulation of the ν−SVR, as it was introduced in [6], would be

minimize τ(w, ξ(∗), ε) =
1

2
‖w‖2 + C ·

(

νε +
1

l

l
∑

i=1

(ξi + ξ∗i)

)

(1)

s.t. ((w · xi) + b) − yi ≤ ε + ξi , yi − ((w · xi) + b) ≤ ε + ξ∗i (2)

ξ
(∗)
i ≥ 0, ε ≥ 0 (3)

The constraints implement as a distance measure the ε-insensitive loss |y−f(x)|ε =
max{0, |y−f(x)|−ε}, which is a basic feature of SVR, and has been shown to yield
robust estimation. The objective itself provides a solution of low complexity (small
‖w‖2) and, at the same time, low errors, balanced by C. In contrast to ε−SVR, as
it was introduced at first in [5], parameterization with the hyper parameter ν also
allows optimization for the width ε of the insensitive region. Interacting with C, ν
controls the complexity of the model. It provides an upper bound on the fraction
of outliers (samples that do not fall into the epsilon tube) and a lower bound on
the fraction of support vectors (SV), see [6] and [1] for further details. As usual for
SVM, the system is transformed into a nonlinear regressor by replacing the scalar
product with a kernel, that fulfills Mercers condition [7]. With a Gaussian kernel
(RBF kernel) the regression function is

z(r) =

l
∑

i=1

α
(∗)
i zi(r) + b , (4)

where

zi(r) = k(xi,x(r)) = exp

(

−
1

γ

∑

∆r∈P

(xi,∆r − x(r + ∆r))
2

)

(5)

is the Gaussian- or RBF-kernel. The resulting SVs xi are a subset of the training
examples, for which one of the constraints (2) holds with equality. They correspond

to Lagrange multipliers having α
(∗)
i = (αi − α∗

i) 6= 0. In the analogy to a RBF

network, the SVs are the centers of the basis functions, while α
(∗)
i are the weights

of the output layer.

3 RBF Filtering

To evaluate a RBF network filter at location r, all the basis functions have to
be evaluated for the neighborhood x(r). This calculation is computationally very
expensive when computed in the straightforward way given by (5). If the squared
sum is multiplied out, however, we can compute the kernel as

zi(r) = exp

(

−
1

γ

(

‖xi‖
2 − 2z′i(r) + z′′i (r)

)

)

, (6)

where

z′i(r) =
∑

∆r∈P

xi,∆rx(r + ∆r) and z′′i (r) =
∑

∆r∈P

x(r + ∆r)2 . (7)

Now we are left with linear filtering operations only, the two cross correlations
z′ and z′′, which can be efficiently computed in the frequency domain, where the
cross correlation of a signal with some filter becomes a multiplication of the signal’s
spectrum with the conjugate complex spectrum of the filter. This operation is
so much faster that the additional computation cost of the Fourier transform is
neglectable. Note that in fact z′′ is the cross correlation of x2 with the filter o,
which is 1 for all ∆r ∈ P . We need to compute the following Fourier transforms:

X(jω) ≡ F [x(r)] , X(2)(jω) ≡ F [x2(r)] ,

Xi(jω) ≡ F [xi(r)] , O(jω) ≡ F [o(r)] . (8)

xi(r) and o(r) are the filters xi and o, zero filled for r /∈ P to the size of the
image. It is necessary to take care of the placement of the origin ∆r = 0 and
the mapping of negative offsets in P , which depends on the implementation of the
Fourier transform. Now zi is easily computed as

zi(r) ≡ exp

(

−
1

γ

(

xT
i xi −F−1

[

2XC
i (jω)X(jω) − OC(jω)X(2)(jω)

])

)

(9)

where (·)C indicates the conjugate complex. Using Fast Fourier Transform (FFT),
the speed improvement is much higher when the size of x is even in terms of powers
of 2 [8]. Thus one should consider enlarging the image size by adding the appropriate
number of zeros at the border. However this can lead to large overhead regions,
when the image size is not close to the next power of 2. For this reason we use a tiling
scheme, which processes the image in smaller parts of even size, which can cover
the entire image more closely. It is important to be aware of the distorted margins
of the image or its tiles, when filtering is done in the frequency domain. Because
the cross correlation in the frequency domain is cyclic, points at the margin, for
which the neighborhood P exceeds the image boundaries, have incorrect values in
the filter’s output. This is particularly important for the tiling scheme, which has to
provide sufficient overlap for the tiles, so that the image can be covered completely
with the uncorrupted inner parts of the tiles. Table 1 summarizes the speed-up
gain for the described filtering method. Most performance gain is obtained through
the filtering in the frequency domain. However, splitting the image into tiles of
appropriate size can improve speed even further.

Table 1: Computation time examples for different filtering methods.

filtering acc. to (5) 6d 10h

FFT filtering, whole image 55m

FFT filtering, tiles of 256 × 256 24m

• image size 1686 × 1681 pixel

• 200 SV of 50 × 50 pixels size

• implementation in MATLAB

• SUN F6800 / 750MHz, 1 CPU

4 Experiments

To test the performance of the method we used two images of wild type and one
of mutant photoreceptor terminals. The profiles of the terminals contain typically
about 100 synaptic vesicles, the number of which could differ if the genes for mem-
brane trafficking are mutated. Detecting such numerical differences is a simple but
tedious task best suited to a computational approach. The wild type images came
from electron micrographs of the same animal under the same physiological condi-
tions. For all images visual identification and hand written labelings of the vesicles
were made. Image ter01 (Fig. 1, left) was used for training. The validation error
on ter04 (Fig. 1, right) was considered for model selection. Then the best model
was tested on the mutant image (Fig. 2).

4.1 Construction of the Target

ter01 contains 286 hand-labeled vesicles at discrete positions. To generate a smooth
target image y, circular gauss blobs with σ2 = 40 and a peak value of 1 were
placed on every label. Now training examples x(r) where generated from ter01 by

Figure 1: EM images of photoreceptor terminals of the wild type fruit fly, Drosophila
melanogaster. The left image (ter01) was used for training, the right image (ter04)
for validation. Arrow: individual synaptic vesicle, 30nm in diameter.

taking square patches, centered around r. We have set the patch size P = 50 × 50
pixels, to cover an entire vesicle plus a little surrounding. The corresponding values
y(r) of the target image where used as targets for regression. The most complete
training set would clearly contain patches from all locations, which however would be
computationally unfeasible. Instead we used patches from all hand-label positions
and additionally 2000 patches from random positions. No patches exceeded the
image boundaries. With these data the SVM was trained. We used the libsvm

implementation [9] which also contains, beside others, the ν-SVR. Mainly three
parameters have to be adjusted for training the ν-SVR: the width of the RBF kernel
γ and the parameters ν and C. Since the training dataset is small compared to the
input dimensionality, the validation error on ter04 is subject to large variance.
Therefore we cannot give a complete parameter exploration here, but we would
expect a model with not too much complexity to give the best generalization. It
turned out that, for the given conditions, a kernel size of γ = 20.000 together with
a low value ν = 0.1 and C = 0.01 yield good validation results on ter04. The
optimization returned 245 SVs, 185 of which where outliers. The kernel width is
large compared with the average distance of the training examples in input space,
which was < 2.000. Because the computation time of the filter grows linearly with
the number of SVs, we are strongly interested in a solution with only few SVs. This
requires small values of ν, since it is a lower bound on the fraction of SVs. At the
same time, small ν values provide large ε and hence restrict the model complexity.
After filtering, the decision which point in z corresponds to a vesicle, has to be
made. Although the regions of high amplitude form sharp peaks, they still have
some spatial extension. Therefore we first discriminate for the peak locations and
then for the amplitude. In a first step, we determine those locations r, for which
z(r) is a local maximum in some neighborhood, which is determined roughly by the
size of a vesicle, i.e. we consider the set

Qd =

{

r : z(r) = max
{∆r:‖r−∆r‖≤d}

z(r + ∆r)

}

. (10)

Then a threshold is applied to the candidates in Qd to yield the set of locations,
which are considered as detected vesicles,

Qθ = {r ∈ Qd : z(r) > θ} . (11)

We set the parameter d = 15 constant in our experiments, and will vary only the
threshold θ.

4.2 Performance Evaluation

To evaluate the performance of the method, the set of detected vesicles Qθ must be
compared with set QExp, which contains the locations detected by a human expert.
Clearly this is only meaningful when done on data which was not used to train the
SVM. We note that the location of the same vesicle may vary slightly in Qθ and
QExp, due to fluctuations in the manual labeling, for example. So we need to find
the set Qmatch, containing pairs (r1, r2) with r1 ∈ Qθ, r2 ∈ QExp, so that r1 and r2

are close to each other and describe the location of the same vesicle. We compute
this with a simple, greedy but fast algorithm:

• compute the matrix Dij = ‖ri − rj‖ for all ri ∈ Qθ, rj ∈ QExp

• while Dij = min D ≤ dm

– put (ri, rj) into Qmatch

– fill i-th row and j-th column of D with +∞

The resulting pairs of matching locations are closer than dm, which should be set
approximately to the radius of a vesicle. This algorithm does not generally find
the global optimal assignment, which would be a NP-complete problem, but for
low point densities the error made by this algorithm is usually low. Now we can
evaluate the fraction of correctly detected and the fraction of false positives,

fc =
#Qmatch

#QExp

, ffp = 1 −
#Qmatch

#Qθ

, (12)

where # denotes the cardinality of the set. Depending on the threshold θ, #Qθ

may change and so does #Qmatch. So we get different values for fc and ffp. We
summarize these two rates in a diagram, which we call, following [10], Receiver
Operating Characteristic (ROC). In comparison to [10], fc represents the hit rate
and ffp represents the false alarm rate, cf. Fig. 3. However, our ROC differs in
some aspects. fc does not need to reach 1 for arbitrary low thresholds, as it is
restricted by the set Qd, which does not need to contain a match to all elements
of QExp. Furthermore, raising the threshold (decreasing #Qθ) may occasionally
increase #Qmatch due to the greedy matching algorithm. These artifacts yield
nonmonotonic parts in the ROC. If no a priori costs are assigned to fc and ffp,
then a natural measure for quality is the area below the ROC, which would be close
to 1 at best, and 0 if no match would be contained in Qd.

4.3 Results

The ROC of the validation with ter04 and mutant is shown in Fig. 3. The rates
fc and ffp were computed for 50 different threshold values, covering the interval
[minr∈Qd

z(r),maxr∈Qd
z(r)]. For ter04 there exist four, and for mutant two, hu-

man expert labelings. Therefore we can plot either four or two curves, respectively,
and get an impression about the variance of our performance measure, the area
below the curve. Furthermore the multiple hand labelings allow us to plot them

Figure 2: left: Photoreceptor terminal a of mutant type (mutant). right: Close up
of the left panel, showing labels set by a human (+) and labels found by our method
(�). Threshold θ was 0.3, which yields fc ≈ 1 − ffp in this case.

against each other in the same figure (single crosses). They indicate what perfor-
mance is achievable at best. A curve passing these points can be considered to
do the task as well on average as a human does. One can see that for the wild
type image the curve gets close to that region. For the mutant the performance is
slightly worse, in terms of the area. In mutants not only the number of vesicles, but
typically also their shape and appearance differ. This variability was not covered
by the training set and had to be generalized from the wild type data.

5 Discussion

We showed that SVR, used as a nonlinear filter, was able to detect synaptic vesicles
in electron micrographs with high accuracy. On the one hand, for good performance
the ability of the SVR to learn the input/output mapping properly is crucial. On
the other hand it is necessary that in the input image a small neighborhood contains
sufficient information about the target. Due to the “curse of dimensionality” (cf.
[5]) the receptive field P must not be too large, unless there is a huge amount of
training data. A smaller input dimension P would make the learning easier, but if
P is too small the information that x(r) contains about y(r) may be too small and
the performance poor. For the presented application patch size P = 50 × 50 was a
good tradeoff. Note that, since we do the filtering in the frequency domain, the size
of P has, in contrast to the number of SVs, no direct influence on the computation
time needed for filtering. Thus, we have a 2500 dimensional input space and only
286 points in this space, that describe a vesicle. Clearly, only a model with low
complexity would achieve acceptable generalization, and this is what we used. In
fact the best linear SVR, i.e. the best linear filter, which has an even much lower
complexity, still yields a performance of Ater04 = 0.82 and Amutant = 0.74 (cf.
Fig. 3, Ater04 = 0.85 . . . 0.89, Ater04 = 0.76 . . . 0.83). However, for future work we
plan to extend the training set significantly. To do so, we have access to hand
labelings for a broad variety of images of different mutants, also including slightly
different scalings. With such more training data the nonlinear SVR can get more
complex without loss of generalization performance. The capacity of the linear filter,
however, cannot grow any further. Thus we expect the performance gap between
nonlinear and linear filtering to grow significantly.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A
1
 = 0.863

A
2
 = 0.848

A
3
 = 0.838

A
4
 = 0.889

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
1
=0.826

A
2
=0.765

Figure 3: ROC of the validation with ter04 (left) and with mutant (right). For
various thresholds θ, fc is plotted on the x-axis versus 1 − ffp on the y-axis. The
single crosses show the fraction of matching labels for every pair of hand labels of
ter04. For detailed explanation, see text.

Acknowledgments

Support Contributed By: BMBF grant 0311559 (R.V., M.S., K.O.) and NIH grant
EY-03592; Killam Trust (I.A.M.)

References

[1] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. The MIT Press,
2002.

[2] R.S. Stowers and T.L. Schwarz. A genetic method for generating drosophila eyes
composed exclusively of mitotic clones of a single genotype. Genetics, (152):1631–
1639, 1999.

[3] R. Fabian-Fine, P. Verstreken, P.R. Hiesinger, J.A. Horne, R. Kostyleva, H.J. Bellen,
and I.A. Meinertzhagen. Endophilin acts after synaptic vesicle fission in drosophila
photoreceptor terminals. J. Neurosci., 2003. (in press).

[4] Simon S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
1998.

[5] Vladimir Vapnik. The Nature of Statistical Learning Theory. 1995.

[6] B. Schölkopf and A. Smola and R. Williamson and P. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, May 2000.

[7] J. Mercer. Functions of positive and negative type and their connection with the the-
ory of integral equations. Philosophical Transactions of the Royal Society of London
A, 209:415–446, 1909.

[8] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C. Cambridge University Press, 2nd. edition, 1992.

[9] Chih-Chung Chang and Chih-Jen Lin. LIBSVM – A Library for Support Vector
Machines. http://www.csie.ntu.edu.tw/˜cjlin/libsvm/, April 2003.

[10] L. O. Harvey, Jr. The critical operating characteristic and the evaluation of expert
judgment. Organizational Behavior and Human Decision Processes, 53(2):229–251,
1992.

