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Abstract

In many applications, such as credit default prediction and medical im-
age recognition, test inputs are available in addition to the labeled train-
ing examples. We propose a method to incorporate the test inputs into
learning. Our method results in solutions having smaller test errors than
that of simple training solution, especially for noisy problems or small
training sets.

1 Introduction

We introduce an estimator of test error that takes into consideration the test inputs. The
new estimator, augmented error, is composed of the training error and an additional term
computed using the test inputs. In some applications, such as credit default prediction and
medical image recognition, we do have access to the test inputs. In our experiments, we
found that the augmented error (which is computed without looking at the test outputs but
only test inputs and training examples) can result in a smaller test error. In particular, it
tends to increase when the test error increases (overtraining) even if the simple training
error does not. (see figure (1)).

In this paper, we provide an analytic solution for incorporating test inputs into learning in
the case of linear, noisy targets and linear hypothesis functions. We also show experimental
results for the nonlinear case.

Previous results on the use of unlabeled inputs include Castelli and Cover [2] who show that
the labeled examples are exponentially more valuable than unlabeled examples in reducing
the classification error. For mixture models, Shahshahani and Landgrebe [7] and Miller
and Uyar [6] investigate incorporating unlabeled examples into learning for classification
problems and using EM algorithm, and show that unlabeled examples are useful especially
when input dimensionality is high and the number of examples is small. In our work we
only concentrate on estimating the test error better using the test inputs and our method
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Figure 1: The augmented error, computed not looking at the test outputs at all, follows the
test error as overtraining occurs.

extends to the case of unlabeled inputs or input distribution information. Our method is
also applicable for regression or classification problems.

In figure 1, we show the training, test and augmented errors, while learning a nonlinear
noisy target function with a nonlinear hypothesis. As overtraining occurs, the augmented
error follows the test error. In section 2, we explain our method of incorporating test inputs
into learning and give the analytical solutions for linear target and hypothesis functions.
Section 3 includes theory about the existence and general form of the new solution. Section
4 discusses experimental results. Section 5 extends our solution to the case of knowing the
input distribution, or knowing extra inputs that are not necessarily test inputs.

2 Incorporating Test Inputs into Learning

In learning-from-examples, we assume we have a training set: {(xy, f1),...,(xn, f~)}
with inputs x, and possibly noisy targets f,. Our goal is to choose a hypothesis
gv, among a class of hypotheses G, minimizing the test error on an unknown test set
{(r1,h1), .., (Y, )}

Using the sample mean square error as our error criterion, the training error of hypothesis
gy is:

N
1
Eo(gv) = 3 2_(9v(xn) = f)?
n=1
Similarly the test error of g, is:

1 M
E(g) = 372 (9v(ym) = hm)’
m=1
Expanding the test error:

1 & 2 1 &
E(gy) = EZQE(Ym)_MZQV(Ym)hm'FHZh?“
m=1 m=1

m=1
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The main observation is that, when we know the test inputs, we know the first term exactly.
Therefore we need only approximate the remajning terms using the training set:

1 M N
E(gy) = M 2912; (Ym) — _‘ZQV(xn)fn Zfrzg (1)
m=1

= Ep (gv) = Z 9v (ym Y Z 9y (x“)

We scale the addition to the training error by an augmentation parameter « to obtain a
more general error function that we call the augmented error:

1 1 &
Ea(gv) = ED(QV)"‘“(M"ZQE(Y?:: ”Fzgi(xn))

where a = 0 corresponds to the training error Ey and a = 1 corresponds to equation (1).

The best value of the augmentation parameter depends on a number of factors including the
target function, the noise distribution and the hypothesis class. In the following sections
we investigate properties of the best augmentation parameter and give a method of finding
the best augmentation parameter when the hypothesis is linear.

3 Augmented Solution for the Linear Hypothesis

In this section we assume hypothesis functions of the form g,(x) = vTx. From here

onwards we will denote the functions by the vector that multiplies the inputs. When the
hypothesis is linear we can find the minimum of the augmented error analytically.

Let X4xn be the matrix of training inputs, Y3 s be the matrix of test inputs and f
contain the training targets. The solution wq minimizing the training error Ey is the least

X
squares solution [5]: wo = (XTXT) Xt
The augmented error E, (v) = Ey (v) + av? ( Y—X‘- - %) v is minimized at the aug-
mented error w,:

we = (I-aR)'wg (2)

-1
where R =1 — (x—f\fz‘) Y—A‘f When a = 0, the augmented solution w,, is equal to the

least mean squares solution wg.

4 Properties of the Augmentation Parameter

Assume a linear target and possibly noisy training outputs: f = w*7 X +e where (eeT) =
2
(2 INX N-.

Since the specific realization of noise e is unknown, instead of minimizing the test error
directly, we focus on minimizing (E (wa)),., the expected value of the test error of the
augmented solution with respect to the noise distribution:

(E(Wa))y = w‘T((I—aR) —I) v ((I— aR)™ - )w"
+%tr ((I-aRT) IKY—(I aR)™} (XXT) 1) 3)

N
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where we have used (e” Ae)_ = o2tr (A) and tr(A) denotes the trace of matrix A. When

a = 0, we have:
o2 [(YYT (XXT\™"
(E(wo))e = Ftr (T( N ) ) 4)

Now, we prove the existence of a nonzero augmentation parameter a when the outputs are
noisy.

Theorem 1: If 02 > 0 and tr (R (I — R)) # 0, then there is an a # 0 that minimizes the
expected test error (E (Wq)),.

Proof: Since %‘—')- = hB‘l(a)%}lB‘l(a) for any matrix B whose elements are
scalar functions of a [3], the derivative of (E (w4 )), withrespectto a at a = 0 is:
d(E (Wa)), N XXT\ 7 ¥yT) o
e L. ZNtT R ~ i —2Nt'r(R(I R))

If the derivative is < 0 (> O respectively), then (E (w,)), is minimized at some a > 0
(a < O respectively). O

The following proposition gives an approximate formula for the best a.

Theorem 2: If N and M are large, and the training and test inputs are drawn i.i.d from
an input distribution with covariance matrix (xx”) = o¢2I, then the a* minimizing
(E (Wa))e x,y the expected test error of the augmented solution with respect to noise and
inputs, is approximately:

ot m e )

Proof: is given in the appendix. O

This formula determines the behavior of the best a. The best a:

e decreases as the signal-to-noise ratio increases.

e increases as % increases, i.e. as we have less examples per input dimension.

4.1 w, as an Estimator of w*
The mean squared error (m.s.e.) of any estimator w of w*, can be written as [1]:
(we =wl?) = liw* = (@)l + (I = @ngli*)
m.s..e(ﬁ') = bias’(W) + variance(Ww)
When a is independent of the specific realization e of the noise:

mse(wa) = w7 (I-(I-aR")")(I-(I-aR)™)w"

-1
+E-N?2-tr ((XﬁT) (I -aRT) (1 -—aR)_l)
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Hence the m.s.e. of the least square estimator wy is:

ﬁt‘r xxT -
N N
Wy is the minimum variance unbiased linear estimator of w*. Although w, is a biased

estimator if aR # 0, the following proposition shows that, when there is noise, there is an
a # 0 minimizing the m.s.e. of w,:

-1
Theorem 3: If 62 > 0 and tr ((-X—f\;—r) (R+RT)) # 0, then there is an a # 0 that

minimizes the m.s.e. of wg.

m.s.e.(wy) =

Proof: is similar to the proof of proposition 1 and will be skipped O.
-1
As N and M getlarge, R=1 — X—fv‘i X—hyTtdOandw,:.:(I—-aR)_lwoﬂwn.

Hence, for large N and M, the bias and variance of w, approach 0, making w, an unbiased
and consistent estimator of w*.

5 A Method to Find the Best Augmentation Parameter
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Figure 2: Using the augmented error results in smaller test error especially when the num-
ber of training examples is small.

Given only the training and test inputs X and Y, and the training outputs f, in this section
we propose a method to find the best a minimizing the test error of w,,.

Equation (3) gives a formula for the expected test error which we want to minimize. How-
ever, we do not know the target w* and the noise variance crE. In equation (3), we replace

TW — & Tw — . .
w* by w, and o2 by (XTwe ;)_ d(_k; = f), where w, is given by equation (2). Then we

find the a minimizing the resulting approximation to the expected test error.

We experimented with this method of finding the best a on artificial and real data. The
results of experiments for liver data’ and bond data? are shown in figure 2. In the liver

1 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/liver-disorders/bupa.data
2We thank Dr. John Moody for providing the bond data.
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database the inputs are different blood test results and the output is the number of drinks
per day. The bond data consists of financial ratios as inputs and rating of the bond from
AAA to B- or lower as the output.

We also compared our method to the least squares (wg) and early stopping using different
validation set sizes for linear and noisy problems. The table below shows the results.

(wa) E(Wearly sto E Wearly sto
L SNR || mean Fed || mean =geraser’ N, = & || mean =griees N, = § |
0.01 0.650 £ 0.006 0.126 £ 0.003 0.192 £ 0.004
1 0.830 & 0.007 1.113 £ 0.021 1.075 £ 0.020
100 1.001 £ 0.002 2.373 £ 0.040 2.073 £0.042

Table 1: Augmented solution is consistently better than the least squares whereas early
stopping gives worse results as the signal-to-noise ratio (SNR) increases. Even averaging

early stopping solutions did not help when SNR = 100 (ﬂ%"(’%)ﬂﬁ = 1.245 £+ 0.018

when N, = & and 1.307 + 0.021 for N, = &). For the results shown, d = 11, N = 30
training examples were used, IV, is the number of validation examples.

6 Extensions

When the input probability distribution or the covariance matrix of inputs, instead of test

inputs are known, X-ME can be replaced by ( xxT) = X and our methods are still applica-

ble.

If the inputs available are not test inputs but just some extra inputs, they can still be incor-
porated into learning. Let us denote the extra K inputs {2z, ...,Zx } by the matrix Z . k.
Then the augmented error becomes:

E,(v) = Eg(v)+aK+Nv X N

K r ( zzT XX T)
e v
The augmented new solution and its expected test error are same as in equations (2) and

-1
(3),exceptwe have Rz = I — (-X—i,‘—?:) -"ﬂz{—T instead of R.

Note that for the linear hypothesis case, the augmented error is not necessarily a regularized

. . i T T . i s
version of the training error, because the matrix %- - X—fé— is not necessarily a positive
definite matrix.

7 Conclusions and Future Work

We have demonstrated a method of incorporating inputs into learning when the target and
hypothesis functions are linear, and the target is noisy. We are currently working on ex-
tending our method to nonlinear target and hypothesis functions.

Appendix

Proof of Theorem 2: When the spectral radius of aR is less than 1 (a is small and/or
N and M are large), we can approximate (I —aR)™' =~ I + aR [4], and similarly,
(I- .9:RT)_1 ~ I + aRT. Discarding any terms with powers of a greater than 1, and






