Experiments with Neural Networks for Real Time Implementation of Control

Part of Advances in Neural Information Processing Systems 8 (NIPS 1995)

Bibtex Metadata Paper


Peter Campbell, Michael Dale, Herman Ferrá, Adam Kowalczyk


This paper describes a neural network based controller for allocating capacity in a telecommunications network. This system was proposed in order to overcome a "real time" response constraint. Two basic architectures are evaluated: 1) a feedforward network-heuristic and; 2) a feedforward network-recurrent network. These architectures are compared against a linear programming (LP) optimiser as a benchmark. This LP optimiser was also used as a teacher to label the data samples for the feedforward neural network training algorithm. It is found that the systems are able to provide a traffic throughput of 99% and 95%, respectively, of the throughput obtained by the linear programming solution. Once trained, the neural network based solutions are found in a fraction of the time required by the LP optimiser.