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Abstract 

We have determined the capacity and information efficiency of an 
associative net configured in a brain-like way with partial connec­
tivity and noisy input cues. Recall theory was used to calculate 
the capacity when pattern recall is achieved using a winners-take­
all strategy. Transforming the dendritic sum according to input 
activity and unit usage can greatly increase the capacity of the 
associative net under these conditions. For moderately sparse pat­
terns, maximum information efficiency is achieved with very low 
connectivity levels (~ 10%). This corresponds to the level of con­
nectivity commonly seen in the brain and invites speculation that 
the brain is connected in the most information efficient way. 

1 INTRODUCTION 

Standard network associative memories become more plausible as models of asso­
ciative memory in the brain if they incorporate (1) partial connectivity, (2) sparse 
activity and (3) recall from noisy cues. In this paper we consider the capacity of 
a binary associative net (Willshaw, Buneman, & Longuet-Higgins, 1969; Willshaw, 
1971; Buckingham, 1991) containing these features. While the associative net is 
a very simple model of associative memory, its behaviour as a storage device is 
not trivial and yet it is tractable to theoretical analysis. We are able to calculate 
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the capacity of the net in different configurations and with different pattern recall 
strategies. Here we consider the capacity as a function of connectivity level when 
winners-take-all recall is used. 

The associative net is an heteroassociative memory in which pairs of binary pat­
terns are stored by altering the connection weights between input and output units 
via a Hebbian learning rule. After pattern storage, an output pattern is recalled 
by presenting a previously stored input pattern on the input units. Which output 
units become active during recall is determined by applying a threshold of activa­
tion to measurements that each output unit makes of the input cue pattern. The 
most commonly used measurement is the weighted sum of the inputs, or dendritic 
sum. Amongst the simpler thresholding strategies is the winners-take-all (WTA) 
approach, which chooses the required number of output units with the highest den­
dritic sums to be active. This works well when the net is fully connected (each input 
unit is connected to every output unit), and input cues are noise-free. However, 
recall performance deteriorates rapidly if the net is partially connected (each input 
unit is connected to only some of the output units) and cues are noisy. 

Marr (1971) recognised that when an associative net is only partially connected, 
another useful measurement for threshold setting is the total input activity (sum of 
the inputs, regardless of the connection weights). The ratio of the dendritic sum 
to the input activity can be a better discriminator of which output units should be 
active than the dendritic sum alone. Buckingham and Willshaw (1993) showed that 
differences in unit usage (the number of patterns in which an output unit is active 
during storage) causes variations in the dendritic sums that makes accurate recall 
difficult when the input cues are noisy. They incorporated both input activity and 
unit usage measurements into a recall strategy that minimised the number of errors 
in the output pattern by setting the activity threshold on a unit by unit basis. This 
is a rather more complex threshold setting strategy than a simple winners-take-all. 

We have previously demonstrated via computer simulations (Graham & Wills haw , 
1994) that the WTA threshold strategy can achieve the same recall performance 
as this minimisation approach if the dendritic sums are transformed by certain 
functions of the input activity and unit usage before a threshold is applied. Here 
we calculate the capacity of the associative net when WTA recall is used with three 
different functions of the dendritic sums: (1) pure dendritic sums, (2) modified by 
input activity and (3) modified by input activity and unit usage. The results show 
that up to four times the capacity can be obtained by transforming the dendritic 
sums by a function of both input activity and unit usage. This increase in capacity 
was obtained without a loss of information efficiency. For the moderately sparse 
patterns used, WTA recall is most information efficient at low levels of connectivity 
(~ 10%), as is the minimisation approach to threshold setting (Buckingham, 1991). 
This connectivity range is similar to that commonly seen in the brain. 



Capacity and Infonnation Efficiency of a Brain-Like Associative Net 515 

2 NOTATION AND OPERATION 

The associative net consists of N B binary output units each connected to a propor­
tion Z of the N A binary input units. Pairs of binary patterns are stored in the net. 
Input and output patterns contain MA and MB active units, respectively (activity 
level a = M / N « 1). All connection weights start at zero. On presentation to 
the net of a pattern pair for storage, the connection weight between an active input 
unit and an active output unit is set to 1. During recall an input cue pattern is 
presented on the input units. The input cue is a noisy version of a previously stored 
input pattern in which a fraction, s, of the MA active units do not come from the 
stored pattern. A thresholding strategy is applied to the output units to determine 
which of them should be active. Those that should be active in response to the 
input cue will be called high units, and those that should be inactive will be called 
low units. We consider winners-take-all (WTA) thresholding strategies that choose 
to be active the MB output units with the highest values of three functions of the 
dendritic sum, d, the input activity, a, and the unit usage, r. These functions are 
listed in Table 1. The normalised strategy deals with partial connectivity. The 
transformed strategy reduces variations in the dendritic sums due to differences in 
unit usage. This function minimises the variance of the low unit dendritic sums 
with respect to the unit usage (Graham & Willshaw, 1994). 

Table 1: WTA Strategies 

WTA Strategy FUnction 
Basic d 
Normalised d' = d/a 
Transformed d* = 1 - (1 - d/a)l/r 

3 RECALL THEORY 

The capacity of the associative net is defined to be the number of pattern pairs that 
can be stored before there is one bit in error in a recalled output pattern. This 
cannot be calculated analytically for the net configuration under study. However, it 
can be determined numerically for the WTA recall strategy by calculating the recall 
response for different numbers of stored patterns, R, until the minimum value of R 
is found for which a recall error occurs. The WTA recall response can be calculated 
theoretically using expressions for the distributions of the dendritic sums of low and 
high output units. The probability that the dendritic sum of a low or high output 
unit should have a particular value x is, respectively (Buckingham & Willshaw, 
1993; Buckingham, 1991) 

P(d, = x) = t. ( ~ ) "'8(1- "B)R-, ( "!,A ) (Zp[rJ)"(I- Zp[rJ)MA-" (I) 
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P(dh = x) = ~ ( ~ ) a;'(l-aB)R-" ( ~A ) (ZI'[r +1])"(1- ZI'[r+1])MA-" 

(2) 
where p[r] and /L[r] are the probabilities that an arbitrarily selected active input is 
on a connection with weight 1. For a low unit, p[r] = 1- (1- OA)r. For a high unit 
a good approximation for /L is /L[r + 1] ~ g + sp[r] = 1 - s(l - OAY where g and 
s are the probabilities that a particular active input in the cue pattern is genuine 
(belongs to the stored pattern) or spurious, respectively (g + s = 1) (Buckingham 
& Willshaw, 1993). The basic WTA response is calculated using these distributions 
by finding the threshold, T, that gives 

(3) 

The number of false positive and false negative errors of the response is given by 

(4) 

The actual distributions of the normalised dendritic sums are the distributions of 
dja. For the purposes of calculating the normalised WTA response, it is possi­
ble to use the basic distributions for the situation where every unit has the mean 
input activity, am = MAZ. In this case the low and high unit distributions are 
approximately 

P(til = x) = t. ( ~ ) ,,;'(1- "B)R-" ( "; ) (p[r])"(l- p[r])"m-" (5) 

P(d'h = x) = ~ ( ~ ) aB(1- "B )R-" ( a; ) (I'[r + 1])" (l-l'[r +1 ])"m -" (6) 

Due to the nonlinear transformation used, it is not possible to calculate the trans­
formed distributions as simple sums of binomials, so the following approach is used 
to generate the transformed WTA response. For a given transformed threshold, T*, 
and for each possible value of unit usage, r, an equivalent normalised threshold is 
calculated via 

T'[r] = am (l - (1 - T*Y) (7) 

The transformed cumulative probabilities can then be calculated from the nor­
malised distributions: 

P( dj :2: TO) = t. ( ~ ) aB(1 - "B )R-" P( til :2: T'[r]) (8) 

P( di. :2: T') = ~ ( ~ ) ,,;'(1 - "B )R-" P(d' :2: T'[r + 1]) (9) 

The normalised and transformed WTA responses are calculated in the same manner 
as the basic response, using the appropriate probability distributions. 
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Figure 1: Capacity Versus Connectivity 
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Extensive simulations were previously carried out of WTA recall from a large 
associative net with the following specifications (Graham & Willshaw, 1994): 
NA = 48000, MA = 1440, NB = 6144, MB = 180. Agreement between the simula­
tions and the theoretical recall described above is extremely good, indicating that 
the approximations used in the theory are valid. Here we use the theoretical recall 
to calculate capacity results for this large associative net that are not easily ob­
tained via simulations. All the results shown have been generated using the theory 
described in the previous section. 

Figure 1 shows the capacity as a function of connectivity for the different WTA 
strategies when there is no noise in the input cue, or 40% noise in the cue (legend: B 
= basic WTA, N = normalised WTA, T = transformed WTA; for clarity, individual 
data points are omitted). With no noise in the cue the normalised and transformed 
methods perform identically, so only the normalised results are shown. Figure l(a) 
highlights the effectiveness of normalising the dendritic sums against input activity 
when the net is partially connected. Figure 1 (b) shows the effect of noise on capacity. 
The capacity of each recall strategy at a given connectivity level is much reduced 
compared to the noise-free case. However, for connectivities greater than 10% the 
capacity of the transformed WTA is now much greater than either the normalised 
or basic WTA. 

The relative capacities of the different strategies are shown in Figure 2 (legend: 
NIB = ratio of normalised to basic capacity, T I B = ratio of transformed to basic, 
TIN = ratio of transformed to normalised). In the noise-free case (Figure 2(a)), at 
low levels of connectivity the relative capacity is distorted because the basic capacity 
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drops to near zero, so that even low normalised capacities are relatively very large. 
For most connectivity levels (10-90%) the normalised WTA provides 2-4 times the 
capacity of the basic WTA. In the noisy case (Figure 2(b)), the normalised capacity 
is only up to 1.5 times the basic capacity over this range of connectivities. The 
transformed WTA, however, provides 3 to nearly 4 times the basic capacity and 2.5 
to nearly 3 times the normalised capacity for connectivities greater than 10%. 

The capacities can be interpreted in information theoretic terms by considering the 
information efficiency of the net. This is the ratio of the amount of information 
that can be retrieved from the net to the number of bits of storage available and 
is given by "'0 = Ro10jZNANB' where Ro is the capacity, 10 is the amount of 
information contained in an output pattern and Z NAN B is the number of weights, 
or bits of storage required (Willshaw et al., 1969; Buckingham & Willshaw, 1992). 
Information efficiency as a function of connectivity is shown in Figure 3. There is 
a distinct peak in information efficiency for each of the recall strategies at some 
low level of connectivity. The peak information efficiencies and the efficiencies at 
full connectivity are summarised in Table 2. The greatest contrast between full 
and partial connectivity is seen with the normalised WTA and noise-free cues. At 
1 % connectivity the normalised WTA is nearly 14 times more efficient than at full 
connectivity. In absolute terms, however, the normalised capacity is only 694 at 
1 % connectivity, compared with 5122 at full connectivity. The peak efficiency of 
53% obtained by the normalised WTA is approaching the theoretically approximate 
maximum of 69% for a fully connected net (Willshaw et al., 1969). 

5 DISCUSSION 

Previous simulations (Graham & Willshaw, 1994) have shown that, when the input 
cues are noisy, the recall performance of the winners-take-all thresholding strategy 
applied to the partially connected associative net is greatly improved if the den­
dritic sums of the output units are transformed by functions of input activity and 
unit usage. We have confirmed and extended these results here by calculating the 
theoretical capacity of the associative net as a function of connectivity. 

For the moderately sparse patterns used, all of the recall strategies are most infor­
mation efficient at very low levels of connectivity �(�~� 10%). However, the optimum 
connectivity level is dependent on the pattern coding rate. Extending the analysis 
of Willshaw et al. (1969) to a partially connected net using normalised WTA recall 
yields that maximum information efficiency is obtained when ZMA = log2(NB). 
So for input coding rates higher than log2(NB), a partially connected net is most 
information efficient. For the input coding rate used here, this relationship gives an 
optimum connectivity level of 0.87%, very close to the 1% obtained from the recall 
theory. 

Comparing the peak efficiencies across the different strategies for the noisy cue 
case, the normalised WTA is about twice as efficient as the basic WTA, while the 
transformed WTA is three times as efficient. This comparison does not include the 






