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Abstract 

This paper presents ongoing work on a speaker independent visual 
speech recognition system. The work presented here builds on previous 
research efforts in this area and explores the potential use of simple 
hidden Markov models for limited vocabulary, speaker independent 
visual speech recognition. The task at hand is recognition of the first 
four English digits, a task with possible applications in car-phone 
dialing. The images were modeled as mixtures of independent 
Gaussian distributions, and the temporal dependencies were captured 
with standard left-to-right hidden Markov models. The results indicate 
that simple hidden Markov models may be used to successfully 
recognize relatively unprocessed image sequences. The system achieved 
performance levels equivalent to untrained humans when asked to 
recognize the fIrst four English digits. 

1 INTRODUCTION 

Visual articulation is an important source of information in face to face speech perception. 
Laboratory studies have shown that visual information allows subjects to tolerate an extra 
4-dB of noise in the acoustic signal. This is particularly important considering that each 
decibel of signal to noise ratio translates into a 10-15% error reduction in the 
intelligibility of entire sentences (McCleod and SummerfIeld, 1990). Lip reading alone 
provides a basis for understanding for a large majority of the hearing impaired and when 
supplemented by acoustic or electrical signals it allows fluent understanding of speech in 
highly trained subjects. However visual information plays more than a simple 
compensatory role in speech perception. From early on humans are predisposed to 
integrate acoustic and visual information. Sensitivity to correspondences in auditory and 
visual information for speech events has been shown in 4 month old infants (Spelke, 
1976; Kuhl & Meltzoff, 1982). By 6 years of age, humans consistently use audio visual 
contingencies to understand speech (Massaro, 1987). By adulthood, visual articulation 
automatically modulates perception of the acoustic signal. Under laboratory conditions it 
is possible to create powerful illusions in which subjects mistakenly hear sounds which 
are biased by visual articulations. Subjects in these experiments are typically unaware cf 
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the discrepancy between the visual and auditory tracks and their experience is that of a 
unified auditory percept (McGurk & McDonnald, 1976). 
Recent years have seen a revival of interest in audiovisual speech perception both in 
psychology and in the pattern recognition literature. There have been isolated efforts to 
build synthetic models of visual and audio-visual speech recognition (Petahan, 1985; 
Nishida, 1986; Yuhas, Goldstein, Sejnowski & Jenkins, 1988; Bregler, Manke, Hild & 
Waibel, 1993; Wolff, Prassad, Stork, & Hennecke, 1994). The main goal of these efforts 
has been to explore different architectures and visual processing techniques and to 
illustrate the potential use of visual information to improve the robustness of current 
speech recognition systems. Cognitive psychologists have also developed high level 
models of audio-visual speech perception that describe regularities in the way humans 
integrate visual and acoustic information (Massaro, 1987). In general these studies 
support the idea that human responses to visual and acoustic stimuli are conditional 
independent. This regularity has been used in some synthetic systems to simplify the 
task of integrating visual and acoustic signals (Wolff, Prassad, Stork, & Hennecke, 
1994). Overall, multimodal speech perception is still an emerging field in which a lot cf 
exploration needs to be done. The work presented here builds on the previous research 
efforts in this area and explores the potential use of simple hidden Markov models 1ir 
limited vocabulary, speaker independent visual speech recognition. The task at hand is 
recognition of the first four English digits, a task with possible applications in car-phone 
dialing. 

2 TRAINING SAMPLE 

The training sample consisted of 96 digitized movies of 12 undergraduate students (9 
males,3 females) from the Cognitive Science Department at UCSD. Video capturing was 
performed in a windowless room at the Center for Research in Language at UCSD. 
Subjects were asked to talk into a video camera and to say the first four digits in English 
twice. Subjects could monitor the digitized images in a small display conveniently 
located in front of them. They were asked to position themselves so that that their lips be 
roughly centered in the feed-back display. Gray scale video images were digitized at 30 
fps, 100x75 pixels, 8 bits per pixel. The video tracks were hand segmented by selecting a 
few relevant frames before and after the beginning and end of activity in the acoustic track. 
Statistics of the entire training sample are shown in table 1. 

Table 1: Frame number statistics. 

Digit Average S.D. 
"One" 8.9 2.1 
"Two" 9.6 2.1 
"Three" 9.7 2.3 
"Four" 10.6 2.2 

3 IMAGE PREPROCESSING 

There are two different approaches to visual preprocessing in the visual speech recognition 
literature (Bregler, Manke, Hild & Waibel, 1993). The first approach, represented by the 
work of Wolff and colleagues (Wolff, Prassad, Stork, & Hennecke, 1994) favors 
sophisticated image preprocessing techniques to extract a limited set of hand-crafted 
features (e.g., height and width of the lips). The advantage of this approach is that it 
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drastically reduces the number of input dimensions. This translates into lower variability 
of the signal, potentially improved generalization, and large savings in computing time. 
The disadvantage is that vital information may be lost when compressing the image into 
a limited set of hand-crafted features. Variability is reduced at the possible expense cf 
bias. Moreover, tests have shown that subtle holistic features such as the wrinkling and 
protrusion of the lips may play an important role in human lip-reading (Montgomery & 
Jackson, 1983). The second approach to visual preprocessing emphasizes preserving the 
original images as much as possible and letting the recognition engine discover the 
relevant features in the images. In most cases, images are low-pass filtered and 
dimension-reduced by using principal component analysis. The results in this papers 
indicate that good results can be obtained even without the use of principal components. 
In this investigation image preprocessing consisted of the following phases: 

1. Symmetry enforcement: At each time frame the raw images were symmetrized by 
averaging pixel by pixel the left and right side of each image, using the vertical midline 
as the axis of symmetry. For convenience from now on we will refer to the raw images as 
"rho-images" and the symmetrized images as "sigma-images." The potential benefits cf 
sigma-images are robustness, and compression, since the number of relevant pixels is 
reduced by half. 

2. Temporal differentiaion: At each time frame we calculated the pixel by pixel differences 
between present sigma-images and immediately past sigma-images. For convenience we 
refer to the resulting images as "delta-images." One of the potential advantages of delta­
images in the visual domain is their robustness to changes in illumination and the fuct 
that they emphasize the dynamic aspects of the visual track. 

3. Low pass filtering and subsampling: The sigma and delta images were compressed and 
subsampled using 20x 15 equidistant Gaussian filters. Different values of the standard 
deviation of the Gaussian filters were tested. 

4. Logistic thresholding and scaling: The sigma and delta images were independently 
thresholded by feeding the output of the Gaussian filters through a according to the 
following equation 

7r 
Y = 256 j(K r;; (x - J.L)) 

-v3a 
where f is the logistic function, and J.L, a, are respectively the average and standard 
deviation of the gray level distribution of entire image sequences. The constant K 
controls the sharpness of the logistic function. Assuming an approximately Gaussian 
distribution of gray levels when K=1 the thresholding function approximates histogram 
equalization, a standard technique in visual processing. Three different K values were 
tried: 0.3, 0.6 and 1.2. 

5. Composites of the relevant portions of the blurred sigma and delta images were fed to 
the recognition network. The number of pixels of each processed image was 300 (150 
from the blurred sigma images and 150 from the blurred delta images). Figure 1 shows 
the effect of the different preprocessing stages. 
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Figure 1: Image Preprocessing. 1) Rho-Image. 2) Sigma-Image. 
3) Delta-Image. 4) Filtered and Sharpened Composite. 

4 RECOGNITION NETWORK 

We used the standard approach in limited vocabulary systems: a bank of hidden Markov 
models, one per word category, independently trained on the corresponding word 
categories. The images were modeled as mixtures of continuous probability distributions 
in pixel space. We tried mixtures of Gaussians and mixtures of Cauchy distributions. 
The mixtures of Cauchy distributions were very stable numerically but they did perform 
very poorly when compared to the Gaussian mixtures. We believe the reason for their 
poor performance is the tendency of Cauchy-based maximum-likelihood estimates to 
focus on individual exemplars. Gaussian-based estimates are much more prone to blend 
exemplars that belong to the same cluster. The initial state probabilities, transition 
probabilities, mixture coefficients, mixture centroids and variance parameters were trained 
using the E-M algorithm. 
We initially encountered severe numerical underflow problems when using the E-M 
algorithm with Gaussian mixtures. These instabilities were due to the fact that the 
probability densities of images rapidly went to zero due to the large dimensionality of the 
images. Trimming the outputs of the Gaussian and using very small Gaussian gains did 
not work well. We solved the numerical problems in the following way: 1) Constraining 
all the variance parameters for all the states and mixtures to be equal. This allowed 
pulling out a constant in the likelihood-function of the mixtures, avoiding most 
numerical problems. 2) Initializing the mixture centroids using linear segmentation 
followed by the K-means clustering algorithm. For example, ifthere were 4 visual frames 
and 2 states, the first 2 frames were assigned to state 1 and the last 2 frames to state 2. K­
means was then used independently on each of the states and their assigned frames. This 
is a standard initialization method in the acoustic domain (Rabiner & Bing-Hwang, 
1993). Since K-means can be trapped in local minima, the algorithm was repeated 20 
times with different starting point and the best solution was fed as the starting point for 
the E-M algorithm. 

5 RESULTS 

The main purpose of this study was to fmd simple image preprocessing techniques that 
would work well with hidden Markov models. We tested a wide variety of architectures 
and preprocessing parameters. In all cases the results were evaluated in terms cf 
generalization to new speakers. Since the training sample is small, generalization 
performance was estimated using the jackknife procedure. Models were trained with 11 
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subjects, leaving one subject out for generalization testing. The entire procedure was 
repeated 12 times, each time leaving a different subject out for testing. Results are thus 
based on 96 generalization trials (4 digits x 12 subjects x 2 observations per subject). In 
all cases we tested several preprocessing techniques using 20 different architectures with 
different number of states (1,3,5,7,9) and mixtures per state (1,3,5,7). To compare the 
effect of each processing technique we used the average generalization performance of the 
best 4 architectures out of the 20 architectures tested. 
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Figure 2: Average performance with the rho, sigma, and delta images. 

Figure 2 shows the effects of symmetry enforcement and temporal differentiation. 
Symmetry enforcement had the benefit of reducing the input dimensionality by half and, 
as the figure show it did not hinder recognition performance. Using delta images had a 
very positive effect on recognition performance, as the figure shows. Figure 3 shows the 
effect of varying the thresholding constant and the standard deviation of the Gaussian 
filters. Best performance was obtained with blurring windows about 4 pixel wide and 
with thresholding just about histogram equalization. 
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Figure 3: Effect of blurring and sharpening. 
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Table 2 shows the effects of variations in the number of states (S) and Gaussian mixtures 
(G) per state. The number within each cell is the percentage of simulations for which a 
particular combination of states and mixtures performed best out of the 20 architectures 
tested. 

Table 2: Effect of varying the the number of states (S) and Gaussian mixtures (G). 

Gl G3 G5 G7 
SI 0.00% 0.00% 0.00% 0.00% 
S3 0.00% 21.87% 12.5% 6.25% 
S5 3.12% 9.37% 15.62% 0.00% 
S7 6.25% 12.5% 0.00% 3.12% 
S9 6.25% 0.00% 3.12% 0.00% 

Best overall performance was obtained with about 3 states and 3 mixtures per state. 
Peak performance was also obtained with a 3-state, 3-mixture per state network, with a 
generalization rate of 89.58% correct. 
To compare these results with human performance, 9 subjects were tested on the same 
sample. Six subjects were normal hearing adults who were not trained in lip-reading. 
Three were hearing impaired with profound hearing loss and had received training in lip 
reading at 2 to 8 years of age. The mean correct response for normal subjects was 89.93 
% correct, just about the same rate as the best artificial network. The hearing impaired 
had an average performance of 95.49% correct, significantly better than our network. 

Table 3: Confusion matrix of the best artificial system. 

1 2 3 4 
"One" 100.00% 0.00% 0.00% 0.00% 
"Two" 4.17% 87.50% 4.17% 4.17% 
"Three" 12.5% 0.00% 83.33% 4.17% 
"Four" 8.33% 4.17% 0.00% 87.50% 

Table 4: Average human confusion matrix. 

1 2 3 4 
"One" 89.36% 0.46% 8.33% 1.85% 
"Two" 1.39% 98.61% 0.00% 0.00% 
"Three" 9.25% 3.24% 85.64% 1.87% 
"Four" 4.17% 0.46% 1.85% 93.52% 

Tables 3 and 4 show the confusion matrices for the best network and the average 
confusion matrix with all 9 subjects combined. The correlation between these two 
matrices was 0.99. This means that 98% of the variance in human confusions can be 
accounted for by the artificial model. This suggests that the representational space 
learned by the artificial system may be a reasonable model of the representational space 
used by humans. Figure 5 shows the representations learned by a network with 6 states 
and 1 mixture per state. Each column is a different digit, starting with "one." Each row 






