
Memory-based Reinforcement Learning: Efficient
Computation with Prioritized Sweeping

Andrew W. Moore
awm@ai.mit.edu

NE43-759 MIT AI Lab.
545 Technology Square
Cambridge MA 02139

Christopher G. At:iteson

Abstract

cga@ai.mit.edu
NE43-771 MIT AI Lab.
545 Technology Square
Cambridge MA 02139

We present a new algorithm, Prioritized Sweeping, for efficient prediction
and control of stochastic Markov systems. Incremental learning methods
such as Temporal Differencing and Q-Iearning have fast real time perfor
mance. Classical methods are slower, but more accurate, because they
make full use of the observations. Prioritized Sweeping aims for the best
of both worlds. It uses all previous experiences both to prioritize impor
tant dynamic programming sweeps and to guide the exploration of state
space. We compare Prioritized Sweeping with other reinforcement learning
schemes for a number of different stochastic optimal control problems. It
successfully solves large state-space real time problems with which other
methods have difficulty.

1 STOCHASTIC PREDICTION

The paper introduces a memory-based technique, prioritized 6weeping, which is used
both for stochastic prediction and reinforcement learning. A fuller version of this
paper is in preparation [Moore and Atkeson, 1992]. Consider the 500 state Markov
system depicted in Figure 1. The system has sixteen absorbing states, depicted by
white and black circles. The prediction problem is to estimate, for every state, the
long-term probability that it will terminate in a white, rather than black, circle.
The data available to the learner is a sequence of observed state transitions. Let us
consider two existing methods along with prioritized sweeping.

263

264 Moore and Atkeson

Figure 1: A 500-state
Markov system. Each
state has a random number
(mean 5) of random suc
cessors chosen within the
local neighborhood.

Temporal Differencing (TD) is an elegant incremental algorithm [Sutton, 1988]
which has recently had success with a very large problem [Tesauro, 1991].

The classical method proceeds by building a maximum likelihood model of the
state transitions. qij (the transition probability from i to i) is estimated by

ANum ber of observations i ~ i
llij = Number of occasions in state i (1)

After t + 1 observations the new absorption probability estimates are computed to
satisfy, for each terminal state k, the linear system

(2)
jeSucC8(i)nNONTERMS

where the i'iJ& [t]'s are the absorption probabilities we are trying to learn, where
succs(i) is the set of all states which have been observed as immediate successors
of i and NONTERMS is the set of non-terminal states.

This set of equations is solved after each transition is observed. It is solved using
Gauss-Seidel-an iterative method. What initial estimates should be used to start
the iteration? An excellent answer is to use the previous absorption probability
estimates i'iJ& [t].

Prioritized sweeping is designed to combine the advantages of the classical
method with the advantages of TD. It is described in the next section, but let us
first examine performance on the original 500-state example of Figure 1. Figure 2
shows the result. TD certainly learns: by 100,000 observations it is estimating the
terminal-white probability to an RMS accuracy of 0.1. However, the performance
of the classical method appears considerably better than TD: the same error of 0.1
is obtained after only 3000 observations.

Figure 3 indicates why temporal differencing may nevertheless often be more useful.
TD requires far less computation per observation, and so can obtain more data in
real time. Thus, after 300 seconds, TD has had 250,000 observations and is down

Memory-based Reinforcement Learning: Efficient Computation with Prioritized Sweeping 265

Mean ± Standard Dev'n TD Classical Pri. Sweep
After 100,000 observations 0.40 ± 0.077 0.024 ± 0.0063 0.024 ± 0.0061
After 300 seconds 0.079 ± 0.067 0.23 ± 0.038 0.021 ± 0.0080

Table 1: RMS prediction error: mean and standard deviation for ten experiments.

1D ------ 1D ------
1.5 0.5 .. us Classical .. us Classical ----

= Pri. Sweep e Pri.Sweep .. I.. 0.4
u 1.35 u 0.35 -----
J:I J:I --..............

oS 1.3 -.. .. = 0.3 .. ~
~

...... 1 " "-1.25 , 0.25

]
,

'tI \ " 1.2
,

u 1.2 " \

IS. 1.15 Do 0.15 \
\

rIJ 0.1 \ fI.l o.t
~ \ ~ =c ... 5 =c 0.15

o o
o 100 300 le3 3e3 ... 3e. ..5 o 0.3 1 3 10 30 100 300

No. observations (log scale) Real time, seconds (log scale)

Figure 2: RMS prediction against ob- Figure 3: RMS prediction against real
servation during three learning alga- time
rithms.

to an error of 0.05, whereas even after 300 seconds the classical method has only
1000 observations and a much cruder estimate.

In the same figures we see the motivation behind prioritized sweeping. Its perfor
mance relative to observations is almost as good as the classical method, while its
performance relative to real time is even better than TD.

The graphs in Figures 2 and 3 were based on only one learning experiment each.
Ten further experiments, each with a different random 500 state problem, were run.
The results are given in Table 1.

2 PRIORITIZED SWEEPING

A longer paper [Moore and Atkeson, 1992] will describe the algorithm in detail.
Here we summarize the essential insights, and then simply present the algorithm
in Figure 4. The closest relation to prioritized sweeping is the search scheduling
technique of the A* algorithm [Nilsson, 1971]. Closely related research is being
performed by [Peng and Williams, 1992] into a similar algorithm to prioritized
sweeping, which they call Dyna-Q-queue .

• The memory requirements oflearning a N, x N, matrix, where N, is the number
of states, may initially appear prohibitive, especially since we intend to operate
with more than 10,000 states. However, we need only allocate memory for the

266 Moore and Atkeson

1. Promote state irecent (the source of the most recent transition) to top of priority
queue.

2. While we are allowed further processing and priority queue not empty
2.1 Remove the top state from the priority queue. Call it i

2.2 amax = 0

2.3 for each Ie E TERMS
Pnew = qil& + L q,j ijl&

j esuccs(i)nNONTERMS
a:= I Pnew - i"il& I
iil& : = Pnew

amax := max(amax , a)

2.4 for each i' E preds(i)
P := qi1iamax
if i' not on queue, or P exceeds the current priority
of i', then promote i' to new priority P.

Figure 4: The prioritized sweeping algorithm. This sequence of operations is exe
cuted each time a transition is observed.

experiences the system actually has, and for a wide class of physical systems
there is not enough time in the lifetime of the physical system to run out of
memory .

• We keep a record of all predecessors of each state. When the eventual absorp
tion probabilities of a state are updated, its predecessors are alerted that they
may need to change. A priority value is assigned to each predecessor according
to how large this change could be possibly be, and it is placed in a priority
queue.

• After each real-world observation i ~ j, the transition probability estimate
qij is updated along with the probabilities of transition to all other previously
observed successors of i. Then state i is promoted to the top of the priority
queue so that its absorption probabilities are updated immediately. Next, we
continue to process further states from the top of the queue. Each state that
is processed may result in the addition or promotion of its predecessors within
the queue. This loop continues for a preset number of processing steps or until
the queue empties.

If a real world observation is interesting, all its predecessors and their earlier an
cestors quickly find themselves near the top of the priority queue. On the other
hand, if the real world observation is unsurprising, then the processing immediately
proceeds to other, more important areas of state-space which had been under con
sideration on the previous time step. These other areas may be different nom those
in which the system currently finds itself.

Memory-based Reinforcement Learning: Efficient Computation with Prioritized Sweeping 267

Dyna-PI+
Dyna-OPT
PriSweep

15 States

400
300
150

117 States

>
500
900
1200

605 States

>
36000
21000
6000

4528 States

>
> 500000
245000
59000

Table 2: Number of observations before 98% of decisions were subsequently optimal.
Dyna and Prioritized Sweeping were each allowed to process ten states per real-world
observation.

3 LEARNING CONTROL FROM REINFORCEMENT

Prioritized sweeping is also directly applicable to stochastic control problems. Re
membering all previous transitions allows an additional advantage for control
exploration can be guided towards areas of state space in which we predict we are
ignorant. This is achieved using the exploration philosophy of [Kaelbling, 1990]
and [Sutton, 1990]: optimism in the face of uncertainty.

4 RESULTS

Results of some maze problems of significant size are shown in Table 2. Each
state has four actions: one for each direction. Blocked actions do not move. One
goal state (the star in subsequent figures) gives 100 units of reward, all others give
no reward, and there is a discount factor of 0.99. Trials start in the bottom left
corner. The system is reset to the start state whenever the goal state has been
visited ten times since the last reset. The reset is outside the learning task: it is
not observed as a state transition. Prioritized sweeping is tested against a highly
tuned Q-learner [Watkins, 1989] and a highly tuned Dyna [Sutton, 1990]. The
optimistic experimentation method (described in the full paper) can be applied to
other algorithms, and so the results of optimistic Dyna-learning is also included.

The same mazes were also run as a stochastic problem in which requested actions
were randomly corrupted 50% of the time. The gap between Dyna-OPT and Prior
itized Sweeping was reduced in these cases. For example, on a stochastic 4528-state
maze Dyna-OPT took 310,000 steps and Prioritized sweeping took 200,000.

We also have results for a five state bench-mark problem described in [Sato et al.,
1988, Barto and Singh, 1990]. Convergence time is reduced by a factor of twenty
over the incremental methods.

268 Moore and Atkeson

Experiences to converge Real time to converge
Q never

Dyna-PI+ never
Optimistic Dyna 55,000 1500 secs

Prioritized Sweeping 14,000 330 secs

Table 3: Performance on the deterministic rod-in-maze task. Both Dynas and
prioritized sweeping were allowed 100 backups per experience.

Finally we consider a task with a 3-d state space quantized into 15,000 potential
discrete states (not all reachable). The task is shown in Figure 5 and involves finding
the shortest path for a rod which can be rotated and translated.

Q, Dyna-PI+, Optimistic Dyna and prioritized sweeping were all tested. The results
are in Table 3. Q and Dyna-PI+ did not even travel a quarter of the way to the
goal, let alone discover an optimal path, within 200,000 experiences. Optimistic
Dyna and prioritized sweeping both eventually converged, with the latter requiring
a third the experiences and a fifth the real time.

When 2000 backups per experience were permitted, instead of 100, then both opti
mistic Dyna and prioritized sweeping required fewer experiences to converge. Op
timistic Dyna took 21,000 experiences instead of 55,000 but took 2,900 seconds
almost twice the real time. Prioritized sweeping took 13,500 instead of 14,000
experiences-very little improvement, but it used no extra time. This indicates
that for prioritized sweeping, 100 backups per observation is sufficient to make
almost complete use of its observations, so that all the long term reward (J,) esti
mates are very close to the estimates which would be globally consistent with the
transition probability estimates ('if';). Thus, we conjecture that even full dynamic
programming after each experience (which would take days of real time) would do
little better.

Figme 5: A three-DOF
problem, and the optimal
solution path.

