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We present a new algorithm, Prioritized Sweeping, for efficient prediction 
and control of stochastic Markov systems. Incremental learning methods 
such as Temporal Differencing and Q-Iearning have fast real time perfor
mance. Classical methods are slower, but more accurate, because they 
make full use of the observations. Prioritized Sweeping aims for the best 
of both worlds. It uses all previous experiences both to prioritize impor
tant dynamic programming sweeps and to guide the exploration of state
space. We compare Prioritized Sweeping with other reinforcement learning 
schemes for a number of different stochastic optimal control problems. It 
successfully solves large state-space real time problems with which other 
methods have difficulty. 

1 STOCHASTIC PREDICTION 

The paper introduces a memory-based technique, prioritized 6weeping, which is used 
both for stochastic prediction and reinforcement learning. A fuller version of this 
paper is in preparation [Moore and Atkeson, 1992]. Consider the 500 state Markov 
system depicted in Figure 1. The system has sixteen absorbing states, depicted by 
white and black circles. The prediction problem is to estimate, for every state, the 
long-term probability that it will terminate in a white, rather than black, circle. 
The data available to the learner is a sequence of observed state transitions. Let us 
consider two existing methods along with prioritized sweeping. 
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Figure 1: A 500-state 
Markov system. Each 
state has a random number 
(mean 5) of random suc
cessors chosen within the 
local neighborhood. 

Temporal Differencing (TD) is an elegant incremental algorithm [Sutton, 1988] 
which has recently had success with a very large problem [Tesauro, 1991]. 

The classical method proceeds by building a maximum likelihood model of the 
state transitions. qij (the transition probability from i to i) is estimated by 

ANum ber of observations i ~ i 
llij = Number of occasions in state i (1) 

After t + 1 observations the new absorption probability estimates are computed to 
satisfy, for each terminal state k, the linear system 

(2) 
jeSucC8(i)nNONTERMS 

where the i'iJ& [t]'s are the absorption probabilities we are trying to learn, where 
succs(i) is the set of all states which have been observed as immediate successors 
of i and NONTERMS is the set of non-terminal states. 

This set of equations is solved after each transition is observed. It is solved using 
Gauss-Seidel-an iterative method. What initial estimates should be used to start 
the iteration? An excellent answer is to use the previous absorption probability 
estimates i'iJ& [t]. 

Prioritized sweeping is designed to combine the advantages of the classical 
method with the advantages of TD. It is described in the next section, but let us 
first examine performance on the original 500-state example of Figure 1. Figure 2 
shows the result. TD certainly learns: by 100,000 observations it is estimating the 
terminal-white probability to an RMS accuracy of 0.1. However, the performance 
of the classical method appears considerably better than TD: the same error of 0.1 
is obtained after only 3000 observations. 

Figure 3 indicates why temporal differencing may nevertheless often be more useful. 
TD requires far less computation per observation, and so can obtain more data in 
real time. Thus, after 300 seconds, TD has had 250,000 observations and is down 



Memory-based Reinforcement Learning: Efficient Computation with Prioritized Sweeping 265 

Mean ± Standard Dev'n TD Classical Pri. Sweep 
After 100,000 observations 0.40 ± 0.077 0.024 ± 0.0063 0.024 ± 0.0061 
After 300 seconds 0.079 ± 0.067 0.23 ± 0.038 0.021 ± 0.0080 

Table 1: RMS prediction error: mean and standard deviation for ten experiments. 
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Figure 2: RMS prediction against ob- Figure 3: RMS prediction against real 
servation during three learning alga- time 
rithms. 

to an error of 0.05, whereas even after 300 seconds the classical method has only 
1000 observations and a much cruder estimate. 

In the same figures we see the motivation behind prioritized sweeping. Its perfor
mance relative to observations is almost as good as the classical method, while its 
performance relative to real time is even better than TD. 

The graphs in Figures 2 and 3 were based on only one learning experiment each. 
Ten further experiments, each with a different random 500 state problem, were run. 
The results are given in Table 1. 

2 PRIORITIZED SWEEPING 

A longer paper [Moore and Atkeson, 1992] will describe the algorithm in detail. 
Here we summarize the essential insights, and then simply present the algorithm 
in Figure 4. The closest relation to prioritized sweeping is the search scheduling 
technique of the A* algorithm [Nilsson, 1971]. Closely related research is being 
performed by [Peng and Williams, 1992] into a similar algorithm to prioritized 
sweeping, which they call Dyna-Q-queue . 

• The memory requirements oflearning a N, x N, matrix, where N, is the number 
of states, may initially appear prohibitive, especially since we intend to operate 
with more than 10,000 states. However, we need only allocate memory for the 
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1. Promote state irecent (the source of the most recent transition) to top of priority 
queue. 

2. While we are allowed further processing and priority queue not empty 
2.1 Remove the top state from the priority queue. Call it i 

2.2 amax = 0 

2.3 for each Ie E TERMS 
Pnew = qil& + L q,j ijl& 

j esuccs(i)nNONTERMS 
a:= I Pnew - i"il& I 
iil& : = Pnew 

amax := max(amax , a) 

2.4 for each i' E preds(i) 
P := qi1iamax 
if i' not on queue, or P exceeds the current priority 
of i', then promote i' to new priority P. 

Figure 4: The prioritized sweeping algorithm. This sequence of operations is exe
cuted each time a transition is observed. 

experiences the system actually has, and for a wide class of physical systems 
there is not enough time in the lifetime of the physical system to run out of 
memory . 

• We keep a record of all predecessors of each state. When the eventual absorp
tion probabilities of a state are updated, its predecessors are alerted that they 
may need to change. A priority value is assigned to each predecessor according 
to how large this change could be possibly be, and it is placed in a priority 
queue. 

• After each real-world observation i ~ j, the transition probability estimate 
qij is updated along with the probabilities of transition to all other previously 
observed successors of i. Then state i is promoted to the top of the priority 
queue so that its absorption probabilities are updated immediately. Next, we 
continue to process further states from the top of the queue. Each state that 
is processed may result in the addition or promotion of its predecessors within 
the queue. This loop continues for a preset number of processing steps or until 
the queue empties. 

If a real world observation is interesting, all its predecessors and their earlier an
cestors quickly find themselves near the top of the priority queue. On the other 
hand, if the real world observation is unsurprising, then the processing immediately 
proceeds to other, more important areas of state-space which had been under con
sideration on the previous time step. These other areas may be different nom those 
in which the system currently finds itself. 
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Dyna-PI+ 
Dyna-OPT 
PriSweep 

15 States 

400 
300 
150 

117 States 

> 
500 
900 
1200 

605 States 

> 
36000 
21000 
6000 

4528 States 

> 
> 500000 
245000 
59000 

Table 2: Number of observations before 98% of decisions were subsequently optimal. 
Dyna and Prioritized Sweeping were each allowed to process ten states per real-world 
observation. 

3 LEARNING CONTROL FROM REINFORCEMENT 

Prioritized sweeping is also directly applicable to stochastic control problems. Re
membering all previous transitions allows an additional advantage for control
exploration can be guided towards areas of state space in which we predict we are 
ignorant. This is achieved using the exploration philosophy of [Kaelbling, 1990] 
and [Sutton, 1990]: optimism in the face of uncertainty. 

4 RESULTS 

Results of some maze problems of significant size are shown in Table 2. Each 
state has four actions: one for each direction. Blocked actions do not move. One 
goal state (the star in subsequent figures) gives 100 units of reward, all others give 
no reward, and there is a discount factor of 0.99. Trials start in the bottom left 
corner. The system is reset to the start state whenever the goal state has been 
visited ten times since the last reset. The reset is outside the learning task: it is 
not observed as a state transition. Prioritized sweeping is tested against a highly 
tuned Q-learner [Watkins, 1989] and a highly tuned Dyna [Sutton, 1990]. The 
optimistic experimentation method (described in the full paper) can be applied to 
other algorithms, and so the results of optimistic Dyna-learning is also included. 

The same mazes were also run as a stochastic problem in which requested actions 
were randomly corrupted 50% of the time. The gap between Dyna-OPT and Prior
itized Sweeping was reduced in these cases. For example, on a stochastic 4528-state 
maze Dyna-OPT took 310,000 steps and Prioritized sweeping took 200,000. 

We also have results for a five state bench-mark problem described in [Sato et al., 
1988, Barto and Singh, 1990]. Convergence time is reduced by a factor of twenty 
over the incremental methods. 
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Experiences to converge Real time to converge 
Q never 

Dyna-PI+ never 
Optimistic Dyna 55,000 1500 secs 

Prioritized Sweeping 14,000 330 secs 

Table 3: Performance on the deterministic rod-in-maze task. Both Dynas and 
prioritized sweeping were allowed 100 backups per experience. 

Finally we consider a task with a 3-d state space quantized into 15,000 potential 
discrete states (not all reachable). The task is shown in Figure 5 and involves finding 
the shortest path for a rod which can be rotated and translated. 

Q, Dyna-PI+, Optimistic Dyna and prioritized sweeping were all tested. The results 
are in Table 3. Q and Dyna-PI+ did not even travel a quarter of the way to the 
goal, let alone discover an optimal path, within 200,000 experiences. Optimistic 
Dyna and prioritized sweeping both eventually converged, with the latter requiring 
a third the experiences and a fifth the real time. 

When 2000 backups per experience were permitted, instead of 100, then both opti
mistic Dyna and prioritized sweeping required fewer experiences to converge. Op
timistic Dyna took 21,000 experiences instead of 55,000 but took 2,900 seconds
almost twice the real time. Prioritized sweeping took 13,500 instead of 14,000 
experiences-very little improvement, but it used no extra time. This indicates 
that for prioritized sweeping, 100 backups per observation is sufficient to make 
almost complete use of its observations, so that all the long term reward (J,) esti
mates are very close to the estimates which would be globally consistent with the 
transition probability estimates ('if';). Thus, we conjecture that even full dynamic 
programming after each experience (which would take days of real time) would do 
little better. 

Figme 5: A three-DOF 
problem, and the optimal 
solution path. 






