Lg Depth Estimation and Ripple Fire Characterization Using Artificial Neural Networks

Part of Advances in Neural Information Processing Systems 3 (NIPS 1990)

Bibtex Metadata Paper


John Perry, Douglas Baumgardt


This srudy has demonstrated how artificial neural networks (ANNs) can be used to characterize seismic sources using high-frequency regional seismic data. We have taken the novel approach of using ANNs as a research tool for obtaining seismic source information, specifically depth of focus for earthquakes and ripple-fire characteristics for economic blasts, rather than as just a feature classifier between earthquake and explosion populations. Overall, we have found that ANNs have potential applications to seismic event characterization and identification, beyond just as a feature classifier. In future studies, these techniques should be applied to actual data of regional seismic events recorded at the new regional seismic arrays. The results of this study indicates that an ANN should be evaluated as part of an operational seismic event identification system.