
A SELF-LEARNING NEURAL NETWORK

A. Hartstein and R. H. Koch
IBM - Thomas J. Watson Research Center

Yorktown Heights, New York

ABSTRACf

We propose a new neural network structure that is compatible
with silicon technology and has built-in learning capability. The
thrust of this network work is a new synapse function. The
synapses have the feature that the learning parameter is em­
bodied in the thresholds of MOSFET devices and is local in char­
acter. The network is shown to be capable of learning by
example as well as exhibiting the desirable features of the
Hopfield type networks.

The thrust of what we want to discuss is a new synapse function for an artificial
neuron to be used in a neural network. We choose the synapse function to be
readily implementable in VLSI technology, rather than choosing a function which
is either our best guess for the function used by real synapses or mathematically
the most tractable. In order to demonstrate that this type of synapse function
provides interesting behavior in a neural network, we imbed this type of function
in a Hopfield {Hopfield, 1982} type network and provide the synapses with a
Hebbian {Hebb, 1949} learning capability. We then show that this type of net­
work functions in much the same way as a Hopfield network and also learns by
example. Some of this work has been discussed previously {Hartstein, 1988}.

Most neural networks, which have been described, use a multiplicative function
for the synapses. The inputs to the neuron are multiplied by weighting factors
and then the results are summed in the neuron. The result of the sum is then put
into a hard threshold device or a device with a sigmoid output. This is not the
easiest function for a MOSFET to perform although it can be done. Over a large
range of parameters, a MOSFET is a linear device with the output current being
a linear function of the input voltage relative to a threshold voltage. If one could
directly utilize these characteristics, one would be able to design a neural network
more compactly.

769

770 Hartstein and Koch

We propose that we directly use MOSFETs as the input devices for the neurons
in the network, utilizing their natural characteristics. We assume the following
form for the input of each neuron in our network:

V; = 0 (2: IIj - T;j I)
1

(1)

where V, is the output, ~ are the inputs and T,j are the learned threshold voltages.
In this network we use a representation in which both the V's and the T's range
from 0 to + 1. The result of the summation is fed into a non-linear sigmoid func­
tion (0). All of the neurons in the network are interconnected, the outputs of
each neuron feeding the inputs of every other neuron. The functional form of Eq.
1 might, for instance, represent several n-channel and p-channel MOSFETs in
parallel.

The memories in this network are contained in the threshold voltages, 1',}" We
implement learning in this network using a simple linear Hebbian {Hebb, 1949}
learning rule. We use a rule which locally reinforces the state of each input node
in a neuron relative to the output of that neuron. The equation governing this
learning algorithm is:

(2)

where 1';j are the initial threshold voltages and T'j are the new threshold voltages
after a time,.6.t. Here TJ is a small learning parameter related to this time period,
and the offset factor O.S is needed for symmetry. Additional saturation con­
straints are imposed to ensure that 1';j remain in the interval 0 to + 1.

This learning rule is one which is linear in the difference between each input and
output of a neuron. This is an enhancing/inhibiting rule. The thresholds are ad­
justed in such a way that the output of the neuron is either pushed in the same
direction as the input (enhancing), or pushed in the opposite direction (inhibit­
ing). For our simple simulations we started the network with all thresholds at O.S
and let learning proceed until some saturation occurred. The somewhat more so­
phisticated method of including a relaxation term in Eq. 2 to slowly push the val­
ues toward O.S over time was also explored. The results are essentially the same
as for our simple simulations.

The interesting question is if we form a network using this type of neuron, what
will the overall network response be like? Will the network learn multiple states
or will it learn a simple average over all of the states it sees? In order to probe the
functioning of this network, we have performed simulations of this network on a
digital computer. Each simulation was divided into two phases. The first was a
learning phase in which a fixed number of random patterns were presented to the
network sequentially for some period of time. During this phase the threshold

A Self-Learning Neural Network 771

voltages were allowed to change using the rule in Eq. 2. The second was a testing
phase in which learning was turned off and the memories established in the net­
work were probed to determine the essential features of these learned memories.
In this way we could test how well the network was able to learn the initial test
patterns, how well the network could reconstruct the learned patterns when pre­
sented with test patterns containing errors, and how the network responded to
random input patterns.

We have simulated this network using N fully interconnected neurons, with N in
the range of 10 to 200. M random patterns were chosen and sequentially pre­
sented to the network for learning. M typically ranged up to N/3. After the
learning phase, the nature of the stable states in the network was tested. In gen­
eral we found that the network is capable of learning all of the input patterns as
long as M is not too large. The network also learns the inverse patterns (l's and
O's interchanged) due to the inherent symmetry of the network. Additional ex­
traneous patterns are learned which have no obvious connection to the intended
learned states. These may be analogous to either the spin glass states or the mixed
pattern states discussed for the multiplicative network {Amit, 1985}.

Fig. 1 shows the capacity of a 100 neuron network. We attempted to teach the
network M states and then probed the network to see how many of the states
were successfully learned. This process was repeated many times until we
achieved good statistics. We have defined successful learning as 1000;6 accuracy.
A more relaxed definition would yield a qualitatively similar curve with larger
capacity.

The functional form of the learning is peaked at a fixed value of the number of
input patterns. For a small number of input patterns, the network essentially
learns all of the patterns. Deviations from perfect learning here generally mean 1
bit of information was learned incorrectly. Near the peak the results become
more noisy for different learning attempts. Most errors are still only 1 or 2 bits!
but the learning in this region becomes marginal as the capacity of the network is
approached. For larger values of the number of input patterns the network be­
comes overloaded and it becomes incapable of learning most of the input states.
Some small number of patterns are still learned, but the network is clearly not
functioning well. Many of the errors in this region are large, showing little corre­
lation with the intended learned states.

This functional form for the learning in the network is the same for all of the net­
work sizes tested. We define the capacity of the network as the average value of
the peak number of patterns which can be successfully learned. The inset to Fig.
1 shows the memory capacity of a number of tested networks as a function of the
size of the network. The network capacity is seen to be a linear function of the
network size. The capacity is proportional to the number of T./s specified. In this

772 Hartstein and Koch

example the network capacity was f ouod to be about 8010 of the maximum possi­
ble for binary information. This rather low figure results from a trade-off of ca­
pacity for the partic\Jlar types of functions that a neural network can perform. It
is possible to construct simple memories with 1000.,.6 capacity.

N
0 100 200

25------------------------~--------------~ 20

]
~

20

~ 15
E o
~

'0 10
~

~
E
~ z

5

, ,
, '.

10 , , ,
0

•

o~--~----~--~----~--~
o 10 20 30 40 50

.?;-
'0
C
0..
0

U

Figure 1. The number of successfully learned patterns as a func­
tion of the number of input patterns for a 100 neuron network.
The dashed curve is for perfect learning. The inset shows the
memory capacity of a threshold neural network as a function of
the size of the network.

Some important measures of learning in the network are the distribution of stable
states in the network after learning has taken place. and the basin of attraction
r or each stable point. One can gain a handle on these parameters by probing the
network with random test patterns after the network has learned M states. Fig.
2 shows the averaged results of such tests for a 100 neuron network and varying
numbers of learned states. The figure shows the probability of finding particular
states. both learned and extraneous. The states are ordered first by decreasing

A Self-Learning Neural Network 773

probability for the learned states, followed by decreasing probability for the ex­
traneous states. It is clear from the figure that both types of stable states are
present in the network. It is also clear that the probabilities of finding different
patterns are not equal. Some learned states are more robust than others, that is
they have larger basins of attraction. This network model does not partition the
available memory space equally among the input patterns. It also provides a large
amount of memory space for the extraneous states. Clearly, this is not the opti­
mum situation.

0.8
~

(a) 0.6
Learned

Q) 0.4 -.s
(/)

0') 0.2 L Extraneous c:
~

0.0 ---c:
G:
..... 0.8 0

.b (b) ~ 0.6 :0 Extraneous e
~ 0.4

0.2 Learned

0.0
0 5 10 15 20 25 30

State

Figure 2. The probability of the network finding a specific pat­
tern. Both learned states and extraneous states are found. The
figure was obtained for a 100 neuron network. Fig. 2a is for 5
learned patterns and 2b is for 10 learned patterns.

Some of the learned states appear to have 0 probability of being found in this
simulation. Some of these states are not stable states of the network and will
never be found. This is particularly true-when the number of learned states is
close to or exceeds the capacity of the network. Others of these states simply
have an extremely small probability of being found in a random search because
they have small basins of attraction. However, as discussed below, these are still
viable states. When the network learns fewer states than its capacity (Fig. 2a),

774 Hartstein and Koch

most of the stable states are the learned states. As the capacity is approached or
exceeded, most of the stable states are extraneous states.

The results shown in Fig. 2 address the question of the networks tolerance to er­
rors. A pattern, which has a large basin of attraction, will be relatively tolerant
to errors when being retrieved, whereas, a pattern, which has a small basin of at­
traction, will be less tolerant of errors. The immunity of the learned patterns to
errors in being retrieved can also be tested in a more direct way. One can probe
the network with test patterns which start out as the learned patterns, but have a
certain number of bits changed randomly. One then monitors the final pattern
which the networks finds and compares to the known learned pattern .

.$

.s
(I)

"i 0.8
E
o
!3
t7'
c: ;:;
c:

0.6

�~� 04
'0 ·
�~�
�~� 0.2
e

0.. • • 0.0 '------.1--.-.-.--___-.4 ...

o 10 20 30 40
Hamming Distance

Figure 3. Probability of the network finding a specific learned
state when the input pattern has a certain Hamming distance.
This figure was obtained for a 100 neuron network which was
taught 10 random patterns.

Fig. 3 shows typical results of such a calculation. The probability of successfully
retrieving a pattern is shown as a function of the Hamming distance. the number
of bits which were randomly changed in the test pattern. For this simulation a
tOO neuron network was used and it was taught 10 patterns. For small Hamming
distances the patterns are successfully found 100°,.6 of the time. As the Hamming
distance gets larger the network is no longer capable of finding the desired pat­
tern. but rather finds one of the other fixed points. This result is a statistical av-

