
A Efficient Net Construction

We start with the existence of error correcting codes for worst case error (e.g. Justesen [1972]).
Theorem 11. There exists a universal constant α > 0, and an efficiently computable mapping ψ :
{0, 1}d → {0, 1}4d such that for any y 6= y′ ∈ {0, 1}d, the Hamming distance dH(ψ(y), ψ(y′)) ≥
4αd. Further, there is an efficiently computable mapping Decode : {0, 1}4d → {0, 1}d such that for
any y ∈ {0, 1}D and any w satisfying dH(ψ(y),w) ≤ αd, Decode(w) returns y.

Armed with this, we prove the desired net construction.
Theorem 12. There is an absolute constant ε > 0 and an efficiently computable map φ : {0, 1}d →
Bd(0, 1) such that (a) ‖φ(y)− φ(y′)‖ ≥ 4ε and (b) x ∈ Bd(φ(y), 2ε), we can efficiently recover y.

Proof. The map φ(y) will be constructed by embedding ψ(y) into Bd(0, 1). We first interpret
ψ(y) as a vector ŷ in {0, 1, . . . , 15}d, with the ith co-ordinate of ŷ being defined by the 4 bits
ψ(y)4i−3, ψ(y)4i−2, ψ(y)4i−1, ψ(y)4i. The ith co-ordinate of φ(y) is set to ŷi/15

√
d. It is easy to

check that φ(y) as defined lies in the unit ball. Consider y,y′ ∈ {0, 1}d such that dH(ψ(y), ψ(y′)) ≥
4αd. This means that ŷ and ŷ′ differ in at least αd locations. This in turn means that ‖φ(y)−φ(y′)‖ ≥√
α/15.

Let x ∈ Bd(φ(y), ε). By Markov’s inequality, |{i : |φ(y)i − xi| ≥ 1
30
√
d
}| is at most 900ε2d. Thus

if we greedily decode each co-ordinate of x and expand that to a 4d-bit vector, the decoding will
be correct except in 3600ε2d locations. Letting ε =

√
α/120, and using properties of ψ, the claim

follows.

B Sampling to Optimization

The following folklore theorem shows that sampling for high λ implies approximate optimization.
Lemma 13. [Sampling Implies Optimization: Generic] Let f : Bd(0, R)→ R and suppose that for
some a ∈ R, the level set La = {x ∈ Bd(0, R) : f(x) ≥ a} is measurable. Then for any ε > 0, and

for λ ≥
ln 1
δ+ln

vold(Bd(0,R))

vold(La)

ε ,

Pr
x∼Dfλ

[f(x) ≥ a+ ε] ≤ δ.

Proof. We write

Pr
x∼Dfλ

[f(x) ≥ a+ ε] ≤ exp(−λ(a+ ε)) · vold(Bd(0, R))

Zλf

≤ exp(−λ(a+ ε)) · vold(Bd(0, R))

exp(λa) · vold(La)

=
exp(−λε)

vold(La)
vold(Bd(0,R))

≤ δ.

Theorem 14. [Sampling Implies Optimization: Lipschitz f] Let f : Bd(0, R)→ R be L-Lipschitz

and let f? = minx∈Bd(0,R) f(x). Then for any ε > 0 and for λ ≥ 2d ln 4LR
ε +2 ln 1

δ

ε ,

Pr
x∼D)fλ

[f(x) ≥ f? + ε] ≤ δ.

Proof. Set a = ε/2, and note that by Lipschitz-ness of f , the level set La contains a ball of radius
ε/2L around the optimizer, so that vold(La)

vold(Bd(0,R)) is at least (ε/4LR)d. Applying Theorem 13, the
claim follows.

12

Theorem 15 (Sampling Implies Optimization: Smooth f). Let f : Bd(0, R)→ R be β-smooth and
let f? = minx∈Bd(0,R) f(x) be attained in the interior of Bd(0, R). Then for any ε > 0 and for

λ ≥ d ln βR2

ε +2 ln 1
δ

ε ,

Pr
x∼D)fλ

[f(x) ≥ f? + ε] ≤ δ.

Proof. Let the mimimum f? be attained at x?; by assumption∇f at x? is zero, and by β-smoothness,
the level set Lε/2 contains a ball of radius (2ε/β)

1
2 around x?. The claim follows.

We note that δ = 1
2 suffices to ensure that efficient samplability implies efficient approximate

optimization, since we can run the sampler multiple times.

C Deferred Proofs

C.1 Incomplete Gamma Functions

The following was used in the proof of Theorem 4.
Lemma 16. Let d be a positive integer and α ≥ 16d. Then∫ 1

2

0

exp(−αr)rd−1 dr ≤ (1 + 2 exp(−d))

∫ 1
4

0

exp(−αr)rd−1 dr

Proof. By definition of the Incomplete Gamma function, for any a ≥ 0,∫ a

0

exp(−αr)rd−1 dr =
1

αd
·
∫ aα

0

exp(−s)sd−1 ds

=
γ(d, aα)

αd
.

Translated to this language, we wish to bound

γ(d, α/2)

γ(d, α/4)
.

We now bound

1− γ(d, α/4)

γ(d, α/2)
≤ 1− γ(d, α/4)

Γ(d)

= Pr
X∼Γ(d,1)

[X ≥ α/4]

≤ Pr
X∼Γ(d,1)

[X ≥ d+ 3d]

≤ exp(−d).

Here in the first step, we have used the fact that the Incomplete Gamma function is the cdf of the
corresponding Gamma distribution. The last step uses standard tail inequalities for sub-gamma
distributions from Boucheron et al. [2013, Section 2.4].

We have thus shown that γ(d,α/4)
γ(d,α/2) ≥ 1− exp(−d). Thus γ(d, α/2) ≤ (1− exp(−d))−1γ(d, α/4).

For d ≥ 1, (1− exp(d))−1 ≤ (1 + 2 exp(−d)) and the claim follows.

D Count Gap Amplification for Cycles

Theorem 6 follows from the NP-hardness of Hamiltonian cycle and the following reduction.
Theorem 17. Given a graph G = (V,E) and an integer k, there is a polynomial time algorithm that
outputs a graph G′ = (V ′, E′) such that

13

-2
-1

0
1

2

-2
-1

0

1

2

h(
x)

0.0

0.5

1.0

1.5

2.0

-2
-1

0
1

2

-2
-1

0

1

2

f(x
)

0

2

4

6

Figure 2: (Left) An example of a function h for d = 2. (Right) The corresponding function f that
results from the transformation, for M = 4, R = 2. Note that we create a new minimizer at 0.

“Completeness”: If G has a Hamiltonian cycle, then G′ has at least 1 + 2tn simple cycles of length
nt.

“Soundness”: If G has no Hamiltonian cycle, then G′ has exactly one cycle of length nt, and no
longer simple cycles.

Efficiency: It is easy to find one cycle of length nt in G′.

Proof. The reduction replaces each edge of G by a path of length t with each edge on the path being
duplicated. In addition, we add a new set of tn vertices that form a cycle, to ensure that we always
have once cycle of length tn. We give more details next.

Let G = (V,E) and let e = (u, v) ∈ E. Our new vertex set V ′ = V1 ∪ V2, where V1 =
V ∪ {ei : e ∈ E, i ∈ [t− 1]} and V2 = {w1, . . . , wnt}. The vertices in V2 form a simple cycle, i.e.
E2 = {(wi, wi+1 : i ∈ [nt− 1])} ∪ {(wnt, w1)}. For every edge e = (u, v) ∈ E, E′ contains two
copies of each edge set Ee1 = {(u, e1), (et, v)} ∪ {(ei, ei+1) : i ∈ [t− 1]}.
It is easy to see thatG′ always has one cycle of length nt consisting ofE2 that can be found efficiently.
Whenever G has a Hamiltonian cycle, we can form a cycle of length nt, by following the paths
corresponding to the edges used in the Hamilitonian cycle in G. At each step, we have a choice of
two edges to choose from, since E′ has parallel edges. This gives us 2nt such cycles, proving the
“completeness” part of the theorem.

Finally note that for any simple cycle of length nt on V1, the projection of the cycle onto the vertices in
V is a simple cycle of length n, i.e. a Hamiltonian cycle. This completes the proof of the “soundness”
part of the theorem.

E Stronger Optimizability

In this section, we show that the separation between optimization and sampling holds even for
stronger notions of f being optimizable.

Theorem 18. There is a family F of functions f : Rd → R such that the following hold.

Efficiency: Each f ∈ F is computable in time poly(d).

Easy Optimization: The zero vector 0 is a global optimizer of f . Further, f satisfies strict sad-
dle, and a randomly initialized gradient descent algorithm will converge to 0 with high
probability.

Hard to Sample: For λ ≥ 2d, there is no 1− exp(−Ω(d))-sampler for Dλf unless NP = RP .

14

Proof. The proof is very similar to that of Theorem 8. We will highlight the relevant changes. First,
we redefine h slightly: h now takes the value 0 whenever Ey defines a simple cycle of length L, and
takes the value d otherwise. Note that it is NP-hard to determines if h−1(0) has size 1 or 2L + 1.

The construction from h to f is similar to that in Theorem 4 with some variation. The function f1

takes the value M , except in small balls around h−1(0) and a new minima at 0. In addition, we add a
linear term. Recalling the definition of round(x) and g(x) from the proof of Theorem 4, we define
f(x) :

f(x) =

 ‖x‖ −
√
d+ 16(M +

√
d) · g(x) if h(round(x)) = 0 and g(x) ≤ 1

16
‖x‖+ 16M · ‖x‖ if ‖x‖ ≤ 1

16
‖x‖+M otherwise

It is easy to verify that f satisfies the following properties:

• f(0) = 0. For y ∈ Hd, h(y) = 0⇔ f(y) = 0.

• f is efficiently computable.

• f is continuous and O(M)-Lipschitz.

• Outside of ∪y:h(y=0)∧y=0Bd(y,
1
16), f is equal to M + ‖x‖.

It follows that the gradient at most points points towards the origin. Thus if the line joining the initial
point of a gradient descent and 0 avoids hitting ∪y:h(y=0)Bd(y,

1
16), gradient descent will converge

to the origin. Since this happens with high probability, it follows that GD will succeed on f w.h.p.
While f as defined is not twice differentiable, convolving f with a small Gaussian gives us a function
that is infinitely differentiable, and whose Lipschitz constant, and behavior with respect to gradient
descent does not significantly change.

The hardness of sampling proof is essentially unchanged, and thus omitted.

F Sharp Threshold Proof

We prove the following result.
Theorem 19. There is a family F of functions f : Bd(0, R)→ R such that the following hold.

Efficiency: Every f ∈ F is computable in time poly(d).

Sampling has a threshold: There is a constant λc > 0 such that for any 1
d < λ < λc, there is a

poly(d/η)-time η-sampler from from the distribution Dλf . On the other hand, for λ > λc,
there is a constant η′ > 0 such that no polynomial time algorithm η′-samples from Dλf
unless NP = RP .

Proof. For a graph G = (V,E), the function h on the hypercube Hd is defined in the natural way for
d = |V |. We identify y with Vy = {vi : yi = 1}, and set h(y) = d− |Vy| if Vy is an independent
set in G and to d otherwise. We then apply Theorem 4, with R = 2

√
d and M = 4d2 ln 24R. For

this value of M , the approximate equivalence between sampling from exp(λ|I|) and sampling from
exp(−λf) holds for λ ≥ 1

d . The claim follows.

15

	Introduction
	Preliminaries
	A Simple separation
	Making the Separation Computational

	Relating Discrete and Continuous Settings
	Optimization can be Easier than Sampling

	A Sharp Threshold for
	Related Work
	Efficient Net Construction
	Sampling to Optimization
	Deferred Proofs
	Incomplete Gamma Functions

	Count Gap Amplification for Cycles
	Stronger Optimizability
	Sharp Threshold Proof

